The mammalian target of rapamycin is a serine-threonine kinase that regulates cell cycle progression. Rapamycin and its analogues inhibit the mammalian target of rapamycin and are being actively investigated in clinical trials as novel targeted anticancer agents. Although cyclin D1 is down-regulated by rapamycin, the role of this down-regulation in rapamycin-mediated growth inhibition and the mechanism of cyclin D1 down-regulation are not well understood. Here, we show that overexpression of cyclin D1 partially overcomes rapamycin-induced cell cycle arrest and inhibition of anchorage-dependent growth in breast cancer cells. Rapamycin not only decreases endogenous cyclin D1 levels but also decreases the expression of transfected cyclin D1, suggesting that this is at least in part caused by accelerated proteolysis. Indeed, rapamycin decreases the half-life of cyclin D1 protein, and the rapamycin-induced decrease in cyclin D1 levels is partially abrogated by proteasome inhibitor N-acetyl-leucyl-leucyl-norleucinal. Rapamycin treatment leads to an increase in the kinase activity of glycogen synthase kinase 3beta (GSK3beta), a known regulator of cyclin D1 proteolysis. Rapamycin-induced down-regulation of cyclin D1 is inhibited by the GSK3beta inhibitors lithium chloride, SB216763, and SB415286. Rapamycin-induced G1 arrest is abrogated by nonspecific GSK3beta inhibitor lithium chloride but not by selective inhibitor SB216763, suggesting that GSK3beta is not essential for rapamycin-mediated G1 arrest. However, rapamycin inhibits cell growth significantly more in GSK3beta wild-type cells than in GSK3beta-null cells, suggesting that GSK3beta enhances rapamycin-mediated growth inhibition. In addition, rapamycin enhances paclitaxel-induced apoptosis through the mitochondrial death pathway; this is inhibited by selective GSK3beta inhibitors SB216763 and SB415286. Furthermore, rapamycin significantly enhances paclitaxel-induced cytotoxicity in GSK3beta wild-type but not in GSK3beta-null cells, suggesting a critical role for GSK3beta in rapamycin-mediated paclitaxel-sensitization. Taken together, these results show that GSK3beta plays an important role in rapamycin-mediated cell cycle regulation and chemosensitivity and thus significantly potentiates the antitumor effects of rapamycin.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-04-2501DOI Listing

Publication Analysis

Top Keywords

cell cycle
16
rapamycin
11
gsk3beta
10
cyclin
9
glycogen synthase
8
synthase kinase
8
kinase 3beta
8
rapamycin-mediated cell
8
cycle regulation
8
regulation chemosensitivity
8

Similar Publications

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

Design, synthesis, and in vitro antitumor evaluation of novel benzimidazole acylhydrazone derivatives.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.

This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.

View Article and Find Full Text PDF

Menstrual effluent cell profiles have potential as noninvasive biomarkers of female reproductive and gynecological health and disease. We used DNA methylation-based cell type deconvolution (methylation cytometry) to identify cell type profiles in self-collected menstrual effluent. During the second day of their menstrual cycle, healthy participants collected menstrual effluent using a vaginal swab, menstrual cup, and pad.

View Article and Find Full Text PDF

An unprecedented global outbreak caused by the monkeypox virus (MPXV) prompted the World Health Organization to declare a public health emergency of international concern on July 23, 2022. Therapeutics and vaccines for MPXV are not widely available, necessitating further studies, particularly in drug repurposing area. To this end, the standardization of in vitro infection systems is essential.

View Article and Find Full Text PDF

Interplay of Light, Melatonin, and Circadian Genes in Skin Pigmentation Regulation.

Pigment Cell Melanoma Res

January 2025

Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.

Circadian regulation of skin pigmentation is essential for thermoregulation, ultraviolet (UV) protection, and synchronization of skin cell renewal. This regulation involves both cell-autonomous photic responses and non-cell-autonomous hormonal control, particularly through melatonin produced in a light-sensitive manner. Photosensitive opsins, cryptochromes, and melatonin regulate circadian rhythms in skin pigment cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!