Accumulating evidence suggests that glutamate plays a key role in the proliferation and invasion of glioblastoma tumors. Astrocytic tumors have been shown to release glutamate at high levels, which may stimulate tumor cell proliferation and motility via activation of glutamate receptors. Excess glutamate has also been found to facilitate tumor invasion by causing excitotoxic damage to normal brain thereby paving a pathway for tumor migration. Results from tissue microarray analyses showed decreased excitatory amino acid transporter-2 (EAAT-2) expression in high-grade glial tumors compared with low-grade astrocytomas and normal brain. EAAT-2 expression was inversely correlated with tumor grade, implicating its potential role in glial tumor progression, which was reflected by an undetectable level of EAAT-2 protein in glioma cell lines. In this study, we sought to investigate the effect of reconstituted EAAT-2 on glioma cell growth in vitro and in vivo by adenoviral-mediated gene transfer. Infection of glioma cells with Ad-EAAT-2 resulted in a physiologic level of functional EAAT-2, and a subsequent dose-dependent reduction in cell proliferation in all glioma cell lines tested compared with controls. Interestingly, results from analyses of Annexin V staining, detection of poly(ADP-ribose)polymerase cleavage and caspase-3 activation all indicated that Ad-EAAT-2 infection elicited apoptosis in glioma cells. Ex vivo experiments in nude mice showed a total suppression of tumor growth at sites that received Ad-EAAT-2-infected cells. Collectively, our results uncovered a new function of EAAT-2 in controlling glioma proliferation. Further studies will improve our knowledge of the role of glutamate in glioma growth and may provide useful prognostic information and alternative therapeutic targets for the treatment of glioma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-04-3626 | DOI Listing |
J Exp Clin Cancer Res
January 2025
School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.
Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.
View Article and Find Full Text PDFActa Neurochir (Wien)
January 2025
Department of Neurosurgery, University Hospital Eppendorf, Hamburg, Germany.
In recent years, it has been increasingly recognized that tumor growth relies not only on support from the surrounding microenvironment but also on the tumors capacity to adapt to - and actively manipulate - its niche. While targeting angiogenesis and modulating the local immune environment have been explored as therapeutic approaches, these strategies have yet to yield effective treatments for brain tumors and remain under refinement. More recently, the nervous system itself has been explored as a critical environmental support for cancer, with extensive neuro-tumoral interactions observed both intracranially and in extracranial sites containing neural components.
View Article and Find Full Text PDFCell Biochem Funct
January 2025
Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.
Spinal cord injury (SCI) is a common neurological trauma that cannot be completely cured with surgical techniques and medications. In this study, we established a mouse SCI model and used an adeno-associated virus (AAV) to achieve the high expression of sonic hedgehog (Shh) at the injury site to further investigate the therapeutic effect and mechanism of Shh on SCI. The results of the present study show that Shh may promote motor function recovery.
View Article and Find Full Text PDFPharm Dev Technol
January 2025
Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye.
Glioblastoma, with a low survival rate, is an aggressive and difficult-to-treat lethal type of brain cancer. Indomethacin (IND), a non-steroidal anti-inflammatory drug, has antitumoral activity in many cancers, including gliomas. However, its poor aqueous solubility is a critical issue.
View Article and Find Full Text PDFCancer Biol Med
December 2024
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!