Transforming growth factor (TGF)-beta is a potent immunosuppressant. Overproduction of TGF-beta by tumor cells may lead to tumor evasion from the host immune surveillance and tumor progression. The present study was conducted to develop a treatment strategy through adoptive transfer of tumor-reactive TGF-beta-insensitive CD8+ T cells. The mouse TRAMP-C2 prostate cancer cells produced large amounts of TGF-beta1 and were used as an experimental model. C57BL/6 mice were primed with irradiated TRAMP-C2 cells. CD8+ T cells were isolated from the spleen of primed animals, were expanded ex vivo, and were rendered TGF-beta insensitive by infecting with a retrovirus containing dominant-negative TGF-beta type II receptor. Results of in vitro cytotoxic assay revealed that these CD8+ T cells showed a specific and robust tumor-killing activity against TRAMP-C2 cells but were ineffective against an irrelevant tumor line, B16-F10. To determine the in vivo antitumor activity, recipient mice were challenged with a single injection of TRAMP-C2 cells for a period up to 21 days before adoptive transfer of CD8+ T cells was done. Pulmonary metastasis was either eliminated or significantly reduced in the group receiving adoptive transfer of tumor-reactive TGF-beta-insensitive CD8+ T cells. Results of immunofluorescent studies showed that only tumor-reactive TGF-beta-insensitive CD8+ T cells were able to infiltrate into the tumor and mediate apoptosis in tumor cells. Furthermore, transferred tumor-reactive TGF-beta-insensitive CD8+ T cells were able to persist in tumor-bearing hosts but declined in tumor-free animals. These results suggest that adoptive transfer of tumor-reactive TGF-beta-insensitive CD8+ T cells may warrant consideration for cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-04-3169DOI Listing

Publication Analysis

Top Keywords

cd8+ cells
36
adoptive transfer
20
tumor-reactive tgf-beta-insensitive
20
tgf-beta-insensitive cd8+
20
transfer tumor-reactive
16
cells
15
tramp-c2 cells
12
cd8+
9
transforming growth
8
prostate cancer
8

Similar Publications

To investigate the effects of 12-week extract supplementation on immune responses and inflammatory cytokines after exhaustive endurance exercise (EEE), emphasizing its novel focus on peripheral blood mononuclear cells (PBMCs) cytokine secretion and the implications of interferon-γ (IFN-γ) as a marker for immune modulation. Twenty healthy men were recruited and assigned into maca and placebo groups using a matched-pair design based on their maximal oxygen consumption (V̇O). All participants consumed 2.

View Article and Find Full Text PDF

Killer Cell Lectin Like Receptor D1 (KLRD1) plays a crucial role in antitumor immunity. However, its expression patterns across various cancers, its relationship with patient prognosis, and its potential as an immunotherapy target remain inadequately understood. We analyzed KLRD1 expression across various cancer types using multi-omics data from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) databases, correlating it with patient prognosis.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is characterized by a poor prognosis globally. PAX-interacting protein 1 (PAXIP1) serves a key role in the development of numerous human cancer types. Nevertheless, its specific involvement in HCC remains poorly understood.

View Article and Find Full Text PDF

Intratumoral Injection of Engineered Induces Antitumor Immunity and Inhibits Tumor Growth.

Biomater Res

January 2024

The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.

Conventional type 1 dendritic cells are essential for antigen presentation and successful initiation of antitumor CD8 T cells. However, their abundance and function within tumors tend to be limited. , a fast-growing, nonpathogenic mycobacterium, proves to be easily modified with synthetic biology.

View Article and Find Full Text PDF

The intracellular delivery of peptides and proteins is crucial for various biomedical applications. Lipid nanoparticles (LNPs) have emerged as a promising strategy for delivering peptides to phagocytic cells. However, the diverse physicochemical properties of peptides necessitate tailored formulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!