Species-area relationships have been observed for virtually all major groups of macroorganisms that have been studied to date but have not been explored for microscopic phytoplankton algae, which are the dominant producers in many freshwater and marine ecosystems. Our analyses of data from 142 different natural ponds, lakes, and oceans and 239 experimental ecosystems reveal a strong species-area relationship with an exponent that is invariant across ecosystems that span >15 orders of magnitude in spatial extent. A striking result is that the species-area relationship derived from small-scale experimental studies correctly scales up to natural aquatic ecosystems. These results significantly broaden our knowledge of the effects of island size on biodiversity and also confirm the relevance of experimentally derived data to the analysis and understanding of larger-scale ecological patterns. In addition, they confirm that patterns in microbial diversity are strongly consistent with those that have been repeatedly reported in the literature for macroorganisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC555514 | PMC |
http://dx.doi.org/10.1073/pnas.0500094102 | DOI Listing |
Yi Chuan
January 2025
Center for Global Change and Ecological Forecasting, Zhejiang Zhoushan Island Ecosystem Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
Due to the unique geographical features of large numbers, isolated by water and diverse formation histories, islands have become natural laboratories for ecological and evolutionary research. Islands have a high proportion of endemic species and disharmony in representing the species compared with that in the continent, which provides a good opportunity to explore the formation of island biodiversity. In this review, we focuse on island ecosystems and describes the progress of research in island biogeography in recent years from three aspects: formation, maintenance, and loss of island biodiversity.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
The positive relationship between species richness and area is a fundamental principle in ecology. However, this pattern deviates on small islands, where species richness either changes independently of area or increases at a slower rate-a phenomenon known as the Small-Island Effect (SIE). While the SIE has been well documented in natural ecosystem, its presence in highly fragmented and disturbed urban ecosystem remains unexplored, posing challenges for urban vegetation conservation.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Animal Science, University of California, Davis, CA 95616, USA. Electronic address:
The species-area relationship (SAR) is one of the oldest in ecology, linking the increase in species richness in sampling area. Later, new parameters were incorporated into its equation, such as taxon-specific responses, habitats use by species and species adapted to human-modified habitats, originating the Countryside SAR, a version intended to integrate the life cycle assessment (LCA) methodology, which is still inefficiencies when used to evaluate food production systems. Therefore, we present the first attempt to incorporate into Countryside SAR the minimum land demand parameter for food production, the food environmental footprint - EFP, and improve the use of the method within the agricultural sciences scope.
View Article and Find Full Text PDFEcosystem size and spatial resource flows are key factors driving species diversity and ecosystem function. However, the question of whether and how these drivers interact has been largely overlooked. Here, we investigated how ecosystem size asymmetry affects species diversity and function of two-patch meta-ecosystems connected through flows of nonliving resources.
View Article and Find Full Text PDFEcol Lett
November 2024
Department of Biology, Washington University, St. Louis, Missouri, USA.
Island biogeography theory provides key insights into biodiversity patterns across islands species-area relationships and conservation. However, classical island biogeography theory assumes that species are ecologically equivalent in terms of their dispersal ability. We evaluated the role of a key trait (hand-wing index, a proxy for dispersal ability in birds) in shaping species-area relationships of avifauna spanning 6706 species on 3894 islands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!