We present a method to covalently attach peptide nucleic acid (PNA) to liposomes by conjugation of PNA peptide to charged amino acids and synthetic di-alkyl lipids ("PNA amphiphile," PNAA) followed by co-extrusion with disteroylphosphatidylcholine (DSPC) and cholesterol. Attachment of four Glu residues and two ethylene oxide spacers to the PNAA was required to confer proper hydration for extrusion and presentation for DNA hybridization. The extent of DNA oligomer binding to 10-mer PNAA liposomes was assessed using capillary zone electrophoresis. Nearly all PNAs on the liposome surface are complexed with a stoichiometric amount of complementary DNA 10-mers after 3-h incubation in pH 8.0 Tris buffer. No binding to PNAA liposomes was observed using DNA 10-mers with a single mismatch. Longer DNA showed a greatly attenuated binding efficiency, likely because of electrostatic repulsion between the PNAA liposome double layer and the DNA backbone. Langmuir isotherms of PNAA:DSPC:chol monolayers indicate miscibility of these components at the compositions used for liposome preparation. PNAA liposomes preserve the high sequence-selectivity of PNAs and emerge as a useful sequence tag for highly sensitive bioanalytical devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la047962u | DOI Listing |
Colloids Surf B Biointerfaces
November 2006
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA.
A FRET-based method is used to observe the desorption of di-alkyl peptide nucleic acid amphiphiles (PNAA) from liposomes occurring on binding of complementary DNA oligomers. PNA liposomes were prepared containing fluorescein-labeled PNAA and rhodamine-labeled dipalmitoylphosphoethanolamine (DPPE). These liposomes showed efficient energy transfer from the fluorescein to rhodamine, with an average donor-to-acceptor distance of 5.
View Article and Find Full Text PDFLangmuir
March 2005
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA.
We present a method to covalently attach peptide nucleic acid (PNA) to liposomes by conjugation of PNA peptide to charged amino acids and synthetic di-alkyl lipids ("PNA amphiphile," PNAA) followed by co-extrusion with disteroylphosphatidylcholine (DSPC) and cholesterol. Attachment of four Glu residues and two ethylene oxide spacers to the PNAA was required to confer proper hydration for extrusion and presentation for DNA hybridization. The extent of DNA oligomer binding to 10-mer PNAA liposomes was assessed using capillary zone electrophoresis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!