Brewster angle microscopy (BAM) shows that a nonamphiphilic polyhedral oligomeric silsesquioxane (POSS) nanofiller, octaisobutyl-POSS, forms aggregates at all surface concentrations at the air/water interface. When amphiphilic poly(dimethylsiloxane) (PDMS) is blended with the octaisobutyl-POSS (>10 wt % PDMS), the degree of POSS aggregation dramatically decreases. Thermodynamic analyses and morphology studies through surface pressure-area per monomer isotherm data and BAM, respectively, exhibit three distinct composition regimes: (1) Blends with >70 wt % POSS have unstable isotherms whose shapes deviate from those of PDMS and form large rigid domains comparable to but smaller than pure, octaisobutyl-POSS films. (2) At compositions between approximately 40 and 70 wt % POSS, the isotherms' features are qualitatively similar to those of pure PDMS, and extensive nanofiller "networks" are observed by BAM. (3) For compositions < or = approximately 30 wt % POSS, the isotherms are essentially those of pure PDMS with small POSS domains dispersed in the PDMS matrix. These results provide further insight into nanofiller aggregation mechanisms and dispersion that may be present in thicker films and bulk systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la047565j | DOI Listing |
Langmuir
January 2025
Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
Silicone coatings are widely employed in marine antifouling applications due to their low surface energy. However, in static marine environments, pure silicone coatings are ineffective in preventing the adhesion of marine biofilms, which consist of proteins, marine bacteria, and extracellular matrices, ultimately promoting the attachment of macrofouling organisms. To address the limitations in antifouling performance under static conditions, this study introduces a silicone-based antifouling coating modified with zwitterionic polymers.
View Article and Find Full Text PDFAnalyst
October 2024
Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
Fluorescence polarization (FP) assays are widely used to quantify biomolecules, and their combination with microfluidic devices has the potential for application in onsite analysis. However, the hydrophobic surface of polydimethylsiloxane (PDMS)-based microfluidic devices and the amphiphilicity of the blocking agents can cause the nonspecific adsorption of biomolecules, which in turn reduces the sensitivity of the FP assay. To address this, we demonstrated an FP assay with improved sensitivity in microfluidic devices using a polyethylene glycol-based surface modification to avoid the use of blocking agents.
View Article and Find Full Text PDFJ Mater Chem B
August 2024
BGI Research, Shenzhen 518083, China.
Biological membranes containing transmembrane channels play a crucial role in numerous cellular processes, and mimicking of cell membranes has garnered significant interest in various biomedical applications, particularly nanopore sequencing technology, where remarkable progress has been made with nanopore membranes. Considering the fragility of biomimetic membranes formed by artificial lipids and the limited mimicry of those formed by common block copolymers, this study developed a novel amphiphilic polymer by covalently linking hydrophilic heads of phospholipids to the ends of hydrophobic poly(dimethyl siloxane) (PDMS) chains. The absence of hydrophilic blocks allowed for good control over the polydispersity of this polymer within a narrow range.
View Article and Find Full Text PDFSmall
October 2024
Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
Designing effective antifog coatings poses challenges in resisting physical and chemical damage, with persistent susceptibility to decomposition in aggressive environments. As their robustness is dictated by physicochemical structural features, precise control through unique fabrication strategies is crucial. To address this challenge, a novel method for crafting nanoscale antifog films with simultaneous directional growth and cross-linking is presented, utilizing solid-state continuous assembly of polymers via ring-opening metathesis polymerization (ssCAP).
View Article and Find Full Text PDFBiofouling
August 2024
Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.
Biofouling on marine surfaces causes immense material and financial harm for maritime vessels and related marine industries. Previous reports have shown the effectiveness of amphiphilic coating systems based on poly(dimethylsiloxane) (PDMS) against such marine foulers. Recent studies on biofouling mechanisms have also demonstrated acidic microenvironments in biofilms and stronger adhesion at low-pH conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!