Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We describe a face recognition system based on two different three-dimensional (3D) sensors. We use 3D sensors to overcome the pose-variation problems that cannot be effectively solved in two-dimensional images. We acquire input data based on a structured-light system and compare it with 3D faces that are obtained from a 3D laser scanner. Owing to differences in structure between the input data and the 3D faces, we can generate the range images of the probe and stored images. For estimating the head pose of input data, we propose a novel error-compensated singular-value decomposition that geometrically estimates the rotation angle. Face recognition rates obtained with principal component analysis on various range images of 35 people in different poses show promising results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.44.000677 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!