Real-time interferometric monitoring of the dip coating process is applied to the study of properties of flowing liquids. Nonvolatile Newtonian oils are considered, allowing validity of a simple model after the steady state is reached where film physical thickness depends on time as t(-1/2). Measurement of two distinct mineral oil standards, under several withdrawing speeds, resulted in kinematic viscosities of 1.17+/-0.03 and 9.9+/-0.2 S (1S = 1 cm2/s). Agreement of these results with nominal values from the manufacturer suggests that interferometric monitoring of dip coating may become a valuable method for accurate, contactless viscometry of liquid films. Advantages and present limitations are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.44.000912 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!