Fluorescence resonance energy transfer (FRET) with green fluorescent protein (GFP) variants has become widely used for biochemical research. In order to expand the choice of fluorescent range in FRET analysis, we designed various color versions of the FRET-based probes for caspase activity, in which the substrate sequence of the caspase was sandwiched by donor and acceptor fluorescent proteins, and studied the potential of these color versions as fluorescent indicators. Six color versions were constructed by a combination of cyan fluorescent protein (CFP), GFP, yellow fluorescent protein (YFP), and DsRed. Real-time monitoring in single cells revealed that all probes could detect caspase activation during tumor necrosis factor (TNF)-alpha-induced cell death as a fluorescent change. GFP-DsRed and YFP-DsRed were as sensitive as CFP-YFP, and CFP-DsRed also showed a large fluorescent change. By using two probes, CFP-DsRed and YFP-DsRed, we carried out simultaneous multi-FRET analysis and revealed that the initiator- and effector-caspases were activated almost simultaneously in TNF-alpha-induced cell death. These findings may give experimental bases for the development of novel techniques to analyze multi-events simultaneously in single cells by using FRET probes in combination.

Download full-text PDF

Source
http://dx.doi.org/10.1254/jphs.fp0040592DOI Listing

Publication Analysis

Top Keywords

fluorescent protein
12
color versions
12
fluorescence resonance
8
resonance energy
8
energy transfer
8
fluorescent
8
single cells
8
tnf-alpha-induced cell
8
cell death
8
fluorescent change
8

Similar Publications

Background: Aspergillus niger is an important industrial filamentous fungus used to produce organic acids and enzymes. A wide dynamic range of promoters, particularly strong promoters, are required for fine-tuning the regulation of gene expression to balance metabolic flux and achieve the high yields of desired products. However, the limited understanding of promoter architectures and activities restricts the efficient transcription regulation of targets in strain engineering in A.

View Article and Find Full Text PDF

Background: This article aims to use high-throughput sequencing to identify miRNAs associated with ferroptosis in myocardial ischemia-reperfusion injury, select a target miRNA, and investigate its role in H9C2 cells hypoxia-reoxygenation injury.

Methods: SD rats and H9C2 cells were used as subjects. ELISA kits quantified MDA, SOD, GSH, LDH, and ferritin levels.

View Article and Find Full Text PDF

TaSnRK3.23B, a CBL-interacting protein kinase of wheat, confers drought stress tolerance by promoting ROS scavenging in Arabidopsis.

BMC Plant Biol

January 2025

Institute of Food Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China.

Background: Sucrose non-fermenting-1-related protein kinases (SnRKs) have been implicated in plant growth and stress responses. Although SnRK3.23 is known to be involved in drought stress, the underlying mechanism of resistance differs between Arabidopsis and rice, and little is known about its function in wheat.

View Article and Find Full Text PDF

Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.

View Article and Find Full Text PDF

In this research, the photophysical properties of metformin hydrochloride (MF-HCl) were studied using spectroscopic and molecular docking techniques. The interaction between metformin hydrochloride and caffeine is essential for understanding the pharmacokinetics of metformin, particularly in populations with high caffeine consumption. Metformin is a first-line medication for managing type 2 diabetes, while caffeine is a widely consumed dietary stimulant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!