Unlabelled: Development of a small animal imaging system for differentiated cell-specific reporter gene expression will enable us to image cellular differentiation in vivo. In this study, we developed a sodium/iodide symporter (NIS)-transgenic mouse in which NIS is constitutively expressed as an imaging reporter gene only in cardiomyocytes.

Methods: To express NIS gene in cardiomyocytes, alpha-myosin heavy chain (alpha-MHC)-NIS was constructed and used for the production of NIS-transgenic mice. Twelve lines of positive founder were obtained. The adequacy of the transgenic mouse model was tested by in vivo scintigraphy, microPET, and a biodistribution study.

Results: The myocardium of transgenic mice showed rapid and intense uptake of 131I, which was much higher than that of the thyroid, and also showed long retention by gamma-camera pinhole imaging. The relative uptake ratio of the heart of transgenic mice was 4.6 +/- 1.5, which was 3.8 +/- 1.2 times higher than that of control wild-type mice. The uptake of the heart was completely blocked by oral administration of KClO4, an NIS inhibitor. The heart of transgenic mouse was also clearly and intensely visualized on microPET using 124I. Biodistribution data of these mice showed the uptake of 40-160 %ID/g (percentage injected dose per gram of tissue) of (99m)Tc-pertechnetate in the heart compared with 40-60 %ID/g in the stomach, respectively. NIS expression in the myocardium was confirmed by immunohistochemistry using a NIS-specific antibody.

Conclusion: We developed a transgenic mouse model to image cardiomyocytes with a gamma-camera and microPET using an alpha-MHC promoter and NIS. The transgenic mouse can be used as an imaging model for cardiomyocyte-specific reporter gene expression and cellular differentiation into cardiomyocytes after cardiac stem or progenitor cell transplantation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

reporter gene
16
transgenic mouse
16
gene expression
12
sodium/iodide symporter
8
symporter nis-transgenic
8
nis-transgenic mouse
8
mouse imaging
8
cardiomyocyte-specific reporter
8
cellular differentiation
8
mouse model
8

Similar Publications

PET Reporter Probes for Brain Imaging of Transduced Gene and Cell Expression: Status and Challenges.

J Med Chem

January 2025

Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892 United States.

Article Synopsis
  • Gene therapy and cell transduction are emerging as promising treatments for neurological and psychiatric disorders, with PET imaging playing a key role in assessing treatment effectiveness.
  • The success of PET imaging relies on the creation of specific radiotracers that can identify exogenous transgenes or modified cells in the brain, potentially eliminating the need for invasive procedures.
  • This article discusses the current state and challenges in developing PET probes for monitoring gene therapy and cellular interventions, highlighting the importance of radiochemical development and practical applications in a clinical setting.
View Article and Find Full Text PDF

The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.

View Article and Find Full Text PDF

5-Lipoxygenase (5-LO), encoded by the gene , is implicated in several pathologies. As key enzyme in leukotriene biosynthesis, 5-LO plays a central role in inflammatory diseases, but the 5-LO pathway has also been linked to development of certain hematological and solid tumor malignancies. Of note, previous studies have shown that the leukemogenic fusion protein MLL-AF4 strongly increases gene promoter activity.

View Article and Find Full Text PDF

Embryonic stem cells (ESCs) hold great promise for regenerative medicine thanks to their ability to self-renew and differentiate into somatic cells and the germline. ESCs correspond to pluripotent epiblast - the tissue from which the following three germ layers originate during embryonic gastrulation: the ectoderm, mesoderm, and endoderm. Importantly, ESCs can be induced to differentiate toward various cell types by varying culture conditions, which can be exploited for modeling of developmental processes such as gastrulation.

View Article and Find Full Text PDF

Background: Post-menopausal women experience more severe muscular fatty infiltration, though the mechanisms remain unclear. The decline in estrogen levels is considered as a critical physiological alteration during post-menopause. Fibro/adipogenic progenitors (FAPs) are identified as major contributors to muscular fatty infiltration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!