Macrophages play an important role in the pathogenesis of chronic colitis. However, it remains unknown how macrophages residing in the colonic lamina propria are regulated. We characterized colonic lamina proprial CD11b-positive cells (CLPMphi). CLPMphi of wild-type mice, but not IL-10-deficient mice, displayed hyporesponsiveness to TLR stimulation in terms of cytokine production and costimulatory molecule expression. We compared CLPMphi gene expression profiles of wild-type mice with IL-10-deficient mice, and identified genes that are selectively expressed in wild-type CLPMphi. These genes included nuclear IkappaB proteins such as Bcl-3 and IkappaBNS. Because Bcl-3 has been shown to specifically inhibit LPS-induced TNF-alpha production, we analyzed the role of IkappaBNS in macrophages. Lentiviral introduction of IkappaBNS resulted in impaired LPS-induced IL-6 production, but not TNF-alpha production in the murine macrophage cell line RAW264.7. IkappaBNS expression led to constitutive and intense DNA binding of NF-kappaB p50/p50 homodimers. IkappaBNS was recruited to the IL-6 promoter, but not to the TNF-alpha promoter, together with p50. Furthermore, small interference RNA-mediated reduction in IkappaBNS expression in RAW264.7 cells resulted in increased LPS-induced production of IL-6, but not TNF-alpha. Thus, IkappaBNS selectively suppresses LPS-induced IL-6 production in macrophages. This study established that nuclear IkappaB proteins differentially regulate LPS-induced inflammatory cytokine production in macrophages.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.174.6.3650DOI Listing

Publication Analysis

Top Keywords

nuclear ikappab
12
il-6 production
12
production macrophages
12
colonic lamina
12
ikappabns
8
ikappabns selectively
8
production
8
lamina propria
8
wild-type mice
8
mice il-10-deficient
8

Similar Publications

Suppression of TLR4/NF-κB signaling by kaurenoic acid in a mice model of monosodium urate crystals-induced acute gout.

Arch Biochem Biophys

January 2025

Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan. Electronic address:

Aim: The aim of the current study was to investigate the potential therapeutic effect of kaurenoic acid (KA) against Monosodium Urate Crystals (MSU)- induced acute gout by downregulation of NF-κB signaling pathway, mitigating inflammation and oxidative stress produced by MSU crystals. KA potentially targeted NF-κB pathway activation and provided comprehensive insights through multiple approaches. This was accomplished by advanced analytical techniques.

View Article and Find Full Text PDF

Upon exposure to inflammatory stimuli including TNF-α, endothelial cells are activated leading to the adhesion of monocytes to their surface. These events are involved in the pathophysiology of atherosclerosis. Since TNF-α activates the NF-κB pathway, which contributes to atherosclerosis, targeting this signaling pathway may help prevent the risk of developing the disease.

View Article and Find Full Text PDF

Exosome-based targeted delivery of NF-κB ameliorates age-related neuroinflammation in the aged mouse brain.

Exp Mol Med

January 2025

Department of Physiology, Inflammation-Cancer Microenvironment Research Center, Ewha Womans University College of Medicine, Seoul, 07804, Republic of Korea.

Neuroinflammation, a significant contributor to various neurodegenerative diseases, is strongly associated with the aging process; however, to date, no efficacious treatments for neuroinflammation have been developed. In aged mouse brains, the number of infiltrating immune cells increases, and the key transcription factor associated with increased chemokine levels is nuclear factor kappa B (NF-κB). Exosomes are potent therapeutics or drug delivery vehicles for various materials, including proteins and regulatory genes, to target cells.

View Article and Find Full Text PDF

Bromoxynil induced hepatic toxicity via dysregulating TLR4/MyD88, JAK1/STAT3 and NF-κB signaling pathways: A dose-dependent investigation.

Tissue Cell

January 2025

Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.

Bromoxynil (BML) is a toxic herbicide that is reported to cause various organ toxicities. However, there is not a single investigation conducted to elucidate the adverse impacts of BML on hepatic tissues at different dose concentrations. Therefore, the current investigation was planned to assess the deleterious effects of BML on liver against different dose concentrations.

View Article and Find Full Text PDF

NF-B Inhibitory Activity of the Di-Hydroxy Derivative of Piperlongumine (PL-18).

J Immunol Res

January 2025

Department of Microbiology, Immunology and Genetics Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.

Inflammation is a critical response of the immune system to infection or injury, serving to repair and restore tissue homeostasis. While acute inflammation generally protects against harmful stimuli, prolonged and chronic inflammation have detrimental effects and disrupts tissue homeostasis. Due to the complex and multifactorial etiology of chronic inflammation, effective treatment remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!