Many seed storage proteins, including monomeric 2S albumin and polymeric prolamin, contain conserved sequences in three separate regions, termed A, B, and C, which contain the consensus motifs LxxC, CCxQL, and PxxC, respectively. Protein-sorting mechanisms in rice (Oryza sativa) endosperm were studied with a green fluorescent protein (GFP) fused to different segments of rice alpha-globulin, a monomeric, ABC-containing storage protein. The whole ABC region together with GFP was efficiently transported to protein storage vacuoles (type II protein bodies [PB-II]) in the endosperm cells and sequestered in the matrix that surrounds the crystalloids. Peptide Gln-23 to Ser-43 in the A region was sufficient to guide GFP to PB-II. However, GFP fused with the AB or B region accumulated in prolamin protein bodies. Substitution mutations in the CCxQL motif in the B region significantly altered protein localization in the endosperm cells. Furthermore, protein extracts containing these substituted proteins had increased amounts of the endoplasmic reticulum (ER) chaperons BiP (for binding protein), protein disulfide isomerase, and calnexin as a part of protein complexes that were insoluble in a detergent buffer. These results suggest that the ER chaperons and disulfide bonds formed at the dicysteine residues in CCxQL play critical roles in sorting fused proteins in the endosperm cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1087992 | PMC |
http://dx.doi.org/10.1105/tpc.105.030668 | DOI Listing |
J Genet Genomics
January 2025
National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China. Electronic address:
Mitochondria are semi-autonomous organelle present in eukaryotic cells, containing their own genome and transcriptional machinery. However, their functions are intricately linked to proteins encoded by the nuclear genome. Mitochondrial transcription termination factors (mTERFs) are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.
Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.
View Article and Find Full Text PDFCell
December 2024
Department of Genetics, University of Georgia, Athens, GA, USA. Electronic address:
Cis-regulatory elements (CREs) precisely control spatiotemporal gene expression in cells. Using a spatially resolved single-cell atlas of gene expression with chromatin accessibility across ten soybean tissues, we identified 103 distinct cell types and 303,199 accessible chromatin regions (ACRs). Nearly 40% of the ACRs showed cell-type-specific patterns and were enriched for transcription factor (TF) motifs defining diverse cell identities.
View Article and Find Full Text PDFPlant Reprod
December 2024
Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany.
This review covers the latest developments on the regulation of early seed development by phytohormones. The development of seeds in flowering plants starts with the fertilization of the maternal gametes by two paternal sperm cells. This leads to the formation of two products, embryo and endosperm, which are surrounded by a tissue of maternal sporophytic origin, called the seed coat.
View Article and Find Full Text PDFBMC Genomics
December 2024
Texas A&M AgriLife Research Center, Beaumont, TX, 77713, USA.
Background: Flag leaf (FL) and panicle architecture (PA) are critical for increasing rice grain yield as well as production. A genome-wide association study (GWAS) can better understand the genetic pathways behind complex traits like FL and PA.
Results: In this study, 208 diverse rice germplasms were grown in the field at the Texas A&M AgriLife Research Center at Beaumont, TX, during 2022 and 2023 following Augmented Randomized Complete Block Design.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!