West Nile virus is a mosquito-borne, neurotropic flavivirus that causes encephalitis in humans and animals. Since being introduced into the Western hemisphere in 1999, WNV has spread rapidly across North America, identifying this virus as an important emerging pathogen. In this study, we developed a DNA-launched infectious molecular clone of WNV that encodes a GFP reporter gene. Transfection of cells with the plasmid encoding this recombinant virus (pWNII-GFP) resulted in the production of infectious WNV capable of expressing GFP at high levels shortly after infection of a variety of cell types, including primary neurons and dendritic cells. Infection of cells with WNII-GFP virus was productive, and could be inhibited with both monoclonal antibodies and interferon-beta, highlighting the potential of this system in the development and characterization of novel inhibitors and therapeutics for WNV infection. As expected, insertion of the reporter gene into the viral genome was associated with a reduced rate of viral replication, providing the selective pressure for the development of variants that no longer encoded the full-length reporter gene cassette. We anticipate this DNA-based, infectious WNV reporter virus will allow novel approaches for the study of WNV infection and its inhibition both in vitro and in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virol.2005.01.021DOI Listing

Publication Analysis

Top Keywords

reporter gene
16
west nile
8
nile virus
8
gfp reporter
8
infectious wnv
8
wnv infection
8
virus
6
wnv
6
reporter
5
infectious
4

Similar Publications

The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.

View Article and Find Full Text PDF

5-Lipoxygenase (5-LO), encoded by the gene , is implicated in several pathologies. As key enzyme in leukotriene biosynthesis, 5-LO plays a central role in inflammatory diseases, but the 5-LO pathway has also been linked to development of certain hematological and solid tumor malignancies. Of note, previous studies have shown that the leukemogenic fusion protein MLL-AF4 strongly increases gene promoter activity.

View Article and Find Full Text PDF

Embryonic stem cells (ESCs) hold great promise for regenerative medicine thanks to their ability to self-renew and differentiate into somatic cells and the germline. ESCs correspond to pluripotent epiblast - the tissue from which the following three germ layers originate during embryonic gastrulation: the ectoderm, mesoderm, and endoderm. Importantly, ESCs can be induced to differentiate toward various cell types by varying culture conditions, which can be exploited for modeling of developmental processes such as gastrulation.

View Article and Find Full Text PDF

Background: Post-menopausal women experience more severe muscular fatty infiltration, though the mechanisms remain unclear. The decline in estrogen levels is considered as a critical physiological alteration during post-menopause. Fibro/adipogenic progenitors (FAPs) are identified as major contributors to muscular fatty infiltration.

View Article and Find Full Text PDF

New insights into the regulation of cyp3a65 expression in transgenic tg(cyp3a65:GFP) zebrafish embryos.

Aquat Toxicol

January 2025

Unité écotoxicologie des substances et des milieux, Institut National de l'Environnement Industriel et des Risques (INERIS), 60550 Verneuil-en-Halatte, France. Electronic address:

Facing the need for alternative models allowing assessment of metabolic-endocrine disrupting chemicals (MDCs), especially in poorly investigated tissues such as the intestine, we recently developed a transgenic zebrafish embryo in vivo model, tg(cyp3a65:GFP), expressing the Green Fluorescent Protein (GFP) under the control of the zebrafish cyp3a65 promoter, ortholog of human cyp3a4, a gene coding for a key enzyme of intestinal xenobiotic and endobiotic metabolism. In this study, we aimed to better understand the regulation of cyp3a65 expression by zfPXR, zfAhR2, and zfGR zebrafish orthologs of well-known human xenosensors PXR and AhR, and steroid nuclear receptor GR. For this purpose, we performed zebrafish embryo tg(cyp3a65:GFP) (co)exposures to a variety of agonists (clotrimazole, TCDD, fluticasone propionate) and antagonists (econazole nitrate, CH223181, RU486), which were characterized using in vitro zebrafish reporter gene assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!