Cervical lymph nodes (CLN) have been described to be the first lymphoid draining site of the brain. In this study we used ultrasound guided fine needle aspiration cytology (USgFNAC) to obtain cells, in vivo, from non-enlarged CLN of multiple sclerosis (MS) patients and HCs (HC), and investigated whether myelin proteins could be detected. Macrophages containing myelin basic protein (MBP) and proteolipid protein (PLP) were found in CLN of all MS patients, whereas these could only be detected in a minority of HC. This novel approach allows investigation of the first draining site of the brain for in vivo analysis of the immune regulation of MS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneuroim.2004.12.018DOI Listing

Publication Analysis

Top Keywords

myelin proteins
8
cervical lymph
8
lymph nodes
8
aspiration cytology
8
draining site
8
site brain
8
vivo detection
4
detection myelin
4
proteins cervical
4
nodes patients
4

Similar Publications

Some patients with neuromyelitis optica spectrum disorder (NMOSD)-like symptoms test negative for anti-aquaporin-4 (anti-AQP4) antibodies. Among them, a subset has antibodies targeting myelin oligodendrocyte glycoprotein (MOG), a condition now termed MOG antibody-associated disease (MOGAD). MOGAD shares features with NMOSD, like optic neuritis and myelitis, but differs in pathophysiology, clinical presentation, imaging findings, and biomarkers.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA.

Background: Neuroimaging-based evidence suggests that changes in cerebral tissue determinants, including axonal density and myelin content, are associated with aging and neurodegenerative diseases. While neuroimaging markers show strong association with physiological changes, direct validation of their specificity remains challenging. Histology provides useful information for validation, however, faces limitations including denaturation of the sample during preparation.

View Article and Find Full Text PDF

Background: Cerebral small vessel disease (cSVD), as defined by neuroimaging characteristics such as white matter hyperintensities (WMHs), cerebral microhemorrhages (CMHs), and lacunar infarcts, is highly prevalent and has been associated with dementia risk and other clinical sequelae. Although risk factors for cSVD have been identified, little is known about the biological processes and molecular mediators that influence cSVD development and progression.

Methods: Within the Atherosclerosis Risk in Communities (ARIC) study, we used SomaScan Multiplexed Proteomic technology to relate 4,877 plasma proteins to concurrently measured MRI-defined cSVD characteristics, including WMHs, CMHs, and lacunar infarcts, in late-life (n=1508; mean age: 76).

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.

Background: Brain age (BA) prediction models have emerged as valuable tools for understanding individual differences in trajectories of brain aging. These models aim to estimate overall brain health by predicting BA based on structural MRI data. To enhance the specificity of existing BA models, we introduce a deep learning-based BA prediction model.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Cognito Therapeutics, Cambridge, MA, USA.

Background: Preclinical investigations in Alzheimer's disease (AD) have highlighted the efficacy of gamma sensory stimulation in mitigating AD-related pathologies. Cognito Therapeutics, Inc. (Cambridge, MA) has designed the Sensory Stimulation System for safe at-home usage, to induce EEG-confirmed gamma oscillations as a potential treatment for AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!