We honor Theo Hellbrugge's acclaimed endeavors in the rehabilitation, or rather the prehabilitation of handicapped children. So far, he has focused on obvious handicaps, and we trust that he will include concern for everybody's silent handicaps in the future by screening for abnormal variability inside the physiological range. Therein, we introduce cis- and trans-years, components of transdisciplinary spectra that are novel for biology and also in part for physics. These components have periods, respectively, shorter and longer than the calendar year, with a counterpart in magnetoperiodism. Transyears characterize indices of geomagnetic activity and the solar wind's speed and proton density. They are detected, alone or together with circannuals, in physiology as well as in pathology, as illustrated for sudden cardiac death and myocardial infarction, a finding calling for similar studies in sudden infant death syndrome (SIDS). As transyears can beat with circannuals, and depend on local factors, their systematic mapping in space and time by transdisciplinary chronomics may serve a better understanding of their putative influence upon the circadian system. Longitudinal monitoring of blood pressure and heart rate detects chronome alterations underlying cardiovascular disease risk, such as that of myocardial infarction and sudden cardiac death. The challenge is to intervene in a timely fashion, preferably at birth, an opportunity for pediatricians in Theo Hellbrugge's footsteps.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC555851PMC
http://dx.doi.org/10.1186/1740-3391-3-2DOI Listing

Publication Analysis

Top Keywords

theo hellbrugge's
8
sudden cardiac
8
cardiac death
8
myocardial infarction
8
theodor hellbrugge
4
hellbrugge years
4
years age
4
age multos
4
multos transannos
4
transannos sanos
4

Similar Publications

Advances in digital camera-based phenotyping of Botrytis disease development.

Trends Plant Sci

January 2025

Biointeractions and Plant Health, Wageningen University and Research, 6708PB Wageningen, The Netherlands. Electronic address:

Botrytis cinerea is an important generalist fungal plant pathogen that causes great economic losses. Conventional detection methods to identify B. cinerea infections rely on visual assessments, which are error prone, subjective, labor intensive, hard to quantify, and unsuitable for artificial intelligence (AI) and machine learning (ML) applications.

View Article and Find Full Text PDF

Bioinspired complex cellulose nanorod-architectures: A model for dual-responsive smart carriers.

Carbohydr Polym

March 2025

Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada; Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, QC H3A 2A7, Canada. Electronic address:

The synergy between nanomaterials as solid supports and supramolecular concepts has resulted in nanomaterials with hierarchical structure and enhanced functionality. Herein, we developed and investigated innovative supramolecular functionalities arising from the synergy between organic moieties and the preexisting nanoscale soft material backbones. Based on these complex molecular nano-architectures, a new nanorod carbohydrate polymer carrier was designed with bifunctional hairy nanocellulose (BHNC) to reveal dual-responsive advanced drug delivery (ADD).

View Article and Find Full Text PDF

Developmental synchrony and extraordinary multiplication rates in pathogenic organisms.

Philos Trans R Soc Lond B Biol Sci

January 2025

Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA.

The multiplication rates of pathogenic organisms influence disease progression, efficacy of immunity and therapeutics, and potential for within-host evolution. Thus, accurate estimates of multiplication rates are essential for biological understanding. We recently showed that common methods for inferring multiplication rates from malaria infection data substantially overestimate true values (i.

View Article and Find Full Text PDF

Time to start taking time seriously: how to investigate unexpected biological rhythms within infectious disease research.

Philos Trans R Soc Lond B Biol Sci

January 2025

Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.

The discovery of rhythmicity in host and pathogen activities dates back to the Hippocratic era, but the causes and consequences of these biological rhythms have remained poorly understood. Rhythms in infection phenotypes or traits are observed across taxonomically diverse hosts and pathogens, suggesting general evolutionary principles. Understanding these principles may enable rhythms to be leveraged in manners that improve drug and vaccine efficacy or disrupt pathogen timekeeping to reduce virulence and transmission.

View Article and Find Full Text PDF

Characterization of extracellular vesicles released from MED4 at the steady state and under a light-dark cycle.

Philos Trans R Soc Lond B Biol Sci

January 2025

Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China.

Bacterial extracellular vesicles (EVs) are vesicles secreted by bacteria into the extracellular environment. Containing DNA, RNA and proteins, EVs are implicated to mediate intercellular communications. The marine cyanobacterium , the most abundant photosynthetic organism in marine ecosystems, has been shown to generate EVs continuously during cell growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!