Antagonist studies show that spinal p38 mitogen-activated protein kinase plays a crucial role in spinal sensitization. However, there are two p38 isoforms found in spinal cord and the relative contribution of these two to hyperalgesia is not known. Here we demonstrate that the isoforms are distinctly expressed in spinal dorsal horn: p38alpha in neurons and p38beta in microglia. In lieu of isoform selective inhibitors, we examined the functional role of these two individual isoforms in nociception by using intrathecal isoform-specific antisense oligonucleotides to selectively block the expression of the respective isoform. In these rats, down-regulation of spinal p38beta, but not p38alpha, prevented nocifensive flinching evoked by intraplantar injection of formalin and hyperalgesia induced by activation of spinal neurokinin-1 receptors through intrathecal injection of substance P. Both intraplantar formalin and intrathecal substance P produced an increase in spinal p38 phosphorylation and this phosphorylation (activation) was prevented when spinal p38beta, but not p38alpha, was down-regulated. Thus, spinal p38beta, probably in microglia, plays a significant role in spinal nociceptive processing and represents a potential target for pain therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2004.02996.xDOI Listing

Publication Analysis

Top Keywords

spinal p38beta
16
spinal
12
spinal sensitization
8
spinal p38
8
role spinal
8
p38beta microglia
8
p38beta p38alpha
8
p38beta isoform
4
isoform mediates
4
mediates tissue
4

Similar Publications

Diabetic cardiomyopathy (DCM) is a serious diabetic complication that lacks effective preventive or therapeutic approaches. Wild-type and Klf15 knockout (Klf15-KO) mice were fed with either high fat diet (HFD, 60% kcal from fat) or normal diet (ND, 10% kcal from fat) for 3 months and then injected with streptozotocin or vehicle, to induce type 2 diabetes (T2D). All T2D and age-matched control mice were treated with or without SDF-1β at 5 mg/kg body-weight twice a week and also continually received HFD or ND for 3 months.

View Article and Find Full Text PDF
Article Synopsis
  • p38 MAPK has two main forms (p38α and p38β), but it's still unclear which is more crucial for chronic pain.
  • Researchers developed specific antisense oligonucleotides (ASOs) targeting these isoforms and tested them in mice models for chronic pain.
  • The findings showed that p38α ASO effectively reduced pain in male mice post-surgery and after specific injuries, indicating it may be a promising treatment for certain chronic pain conditions, particularly in a sex-dependent way.
View Article and Find Full Text PDF

The glucagon-like peptide-1 (GLP-1) receptor agonist exenatide stimulates microglial β-endorphin expression and subsequently produces neuroprotection and antinociception. This study illustrated an unrecognized autocrine role of IL-10 in mediation of exenatide-induced β-endorphin expression. Treatment with exenatide in cultured primary spinal microglia concentration dependently stimulated the expression of the M2 microglial markers IL-10, IL-4, Arg 1, and CD206, but not the M1 microglial markers TNF-α, IL-1β, IL-6, or CD68.

View Article and Find Full Text PDF

Bulleyaconitine (BAA) has been shown to possess antinociceptive activities by stimulation of dynorphin A release from spinal microglia. This study investigated its underlying signal transduction mechanisms. The data showed that (1) BAA treatment induced phosphorylation of CREB (rather than NF-κB) and prodynorphin expression in cultured primary microglia, and antiallodynia in neuropathy, which were totally inhibited by the CREB inhibitor KG-501; (2) BAA upregulated phosphorylation of p38 (but not ERK or JNK), and the p38 inhibitor SB203580 (but not ERK or JNK inhibitor) and p38β gene silencer siRNA/p38β (but not siRNA/p38α) completely blocked BAA-induced p38 phosphorylation and/or prodynorphin expression, and antiallodynia; (3) BAA stimulated cAMP production and PKA phosphorylation, and the adenylate cyclase inhibitor DDA and PKA inhibitor H-89 entirely antagonized BAA-induced prodynorphin expression and antiallodynia; (4) The Gs-protein inhibitor NF449 completely inhibited BAA-increased cAMP level, prodynorphin expression and antiallodynia, whereas the antagonists of noradrenergic, corticotrophin-releasing factor, A1 adenosine, formyl peptide, D1/D2 dopamine, and glucagon like-peptide-1 receptors failed to block BAA-induced antiallodynia.

View Article and Find Full Text PDF

Recent discoveries established that activation of glucagon-like peptide-1 receptors (GLP-1Rs) mediates neuroprotection and antinociception through microglial -endorphin expression. This study aimed to explore the underlying signaling mechanisms of microglial -endorphin. GLP-1Rs and -endorphin were coexpressed in primary cultures of microglia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!