The mechanical behavior of the vertebrate skull is often modeled using free-body analysis of simple geometric structures and, more recently, finite-element (FE) analysis. In this study, we compare experimentally collected in vivo bone strain orientations and magnitudes from the cranium of the American alligator with those extrapolated from a beam model and extracted from an FE model. The strain magnitudes predicted from beam and FE skull models bear little similarity to relative and absolute strain magnitudes recorded during in vivo biting experiments. However, quantitative differences between principal strain orientations extracted from the FE skull model and recorded during the in vivo experiments were smaller, and both generally matched expectations from the beam model. The differences in strain magnitude between the data sets may be attributable to the level of resolution of the models, the material properties used in the FE model, and the loading conditions (i.e., external forces and constraints). This study indicates that FE models and modeling of skulls as simple engineering structures may give a preliminary idea of how these structures are loaded, but whenever possible, modeling results should be verified with either in vitro or preferably in vivo testing, especially if precise knowledge of strain magnitudes is desired.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ar.a.20167 | DOI Listing |
Appl Microbiol Biotechnol
January 2025
Chair of Microbiology, Technical University of Munich, TUM School of Life Science, Emil-Ramann-Str. 4, 85354, Freising, Germany.
The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany.
Background/purpose: Although clinical studies have suggested a link between non-axial forces and reduced longevity of cervical restorations, the underlying mechanisms require further numerical investigation. This in-silico study employed a cohesive zone model (CZM) to investigate interfacial damage in a cervical restoration subjected to different load directions.
Materials And Methods: A plane strain model of a maxillary premolar was established, with a wedge-shaped buccal cervical restoration.
Intracellular protein production in bacteria is limited by the need for lysis and costly purification. A promising alternative is to engineer the host organism for protein secretion. While the serovar Typhimurium ( .
View Article and Find Full Text PDFPak J Med Sci
January 2025
Sasankoti Mohan Ravi Prakash, DMD, MDS, BDS Dentist and Independent Researcher, Hope Health Inc, 360 N Irby St. Florence, South Carolina, USA 29501.
Background & Objective: Currently, there are many implants in clinical use, making it hard to choose the right one for the patient. The success rate of an implant depends on its diameter, length, and direction of insertion in bone. In implant dentistry, Finite Element Analysis (FEA) simulates intraoral conditions in vitro and analyzes the effects of implant material, diameter, size, and other components related to oral structure on the implant and peri-implant tissues.
View Article and Find Full Text PDFJ Bone Miner Res
January 2025
MRC Lifecourse Epidemiology Centre, Human Development and Health, University of Southampton, Southampton, United Kingdom.
HIV-related mortality has fallen due to scale-up of antiretroviral therapy (ART), so more women living with HIV (WLH) now live to reach menopause. Menopausal estrogen loss causes bone loss, as do HIV and certain ART regimens. However, quantitative bone data from WLH are few in Africa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!