Objective: The purpose of this study was to describe the usefulness of recent advances of neuronavigational technology in the management of skull base tumors and of vascular lesions, treated via a skull base approach.
Methods: In 16 patients (skull base meningioma n = 9, petrous apex epidermoid n = l, craniopharyngeoma n = 1, giant internal carotid artery aneurysm n = 1, basilar/vertebral artery aneurysm n = 2, brain stem cavernoma n = 2), "advanced" neuronavigation was used. In contrast to "conventional" neuronavigation, the information for the neurosurgeon was enhanced by the intraoperative screen display of 3-dimensional reconstructions of the lesion, vessels, nerves and fiber tracts at risk. The 3-dimensional reconstructions were obtained by preoperative manual or automated segmentation processes. In addition, different imaging modalities (computed tomography [CT] with magnetic resonance imaging [MRI], CT with CT angiography, T (l)- with diffusion-weighted MRI) were fused and shown on the screen.
Results: In the cases of tumors, "advanced" neuronavigation facilitated the approach (n = 4), contributed to tailor the approach (n = 2) and helped to identify hidden neurovascular structures (n = 9). In the cases of aneurysms, "advanced" neuronavigation allowed us to reduce the skull base approach to the needs of safe aneurysm clipping (n = 3). In both cases of brain stem cavernoma, "advanced" neuronavigation was deemed useful for definition of the best surgical approach in relation to the pyramidal tract and brain stem nuclei.
Conclusion: The authors' experiences suggest that neuronavigation, which displays 3-dimensional reconstructions of lesion, vessels, nerves and fiber tracts during surgery and makes use of image fusion techniques, is an important tool in the neurosurgical management of skull base lesions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-2004-830179 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!