In a previous study using fusion of the deregulated lactose promoter lacTp* and reporter genes, we suggested that Lactobacillus casei could initiate de novo protein synthesis during intestinal transit. In order to confirm this finding and extend it to other promoters, we adopted a reverse transcriptase quantitative PCR (RT-QPCR) approach combined with a transcriptional fusion system consisting of luciferase genes under the control of four promoters (ccpA, dlt, ldh, and lacT*) from L. casei DN-114 001. Promoter expression was monitored during cell growth, and variable luciferase activities were detected. In 3-day cultures, all the genetically modified strains survived but without exhibiting luciferase activity. Luciferase mRNA levels determined by RT-QPCR analysis (RNA/CFU) were not significant. The cultures were administered to human-microbiota-associated mice, and the feces were collected 6 h later. L. casei promoters lacTp* and ldhp initiated mRNA synthesis during gastrointestinal transit. The promoters, ccpAp and dltp, exhibited no luciferase activity, nor was de novo-synthesized luciferase mRNA detected in the feces. L. casei seems to adapt its physiology to the gastrointestinal tract environment by modulating promoter activities. The approach (fecal transcriptional analysis) described herein may, moreover, be of value in studying gene expression of transiting bacteria in human fecal specimens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1065133PMC
http://dx.doi.org/10.1128/AEM.71.3.1356-1363.2005DOI Listing

Publication Analysis

Top Keywords

lactobacillus casei
8
casei promoters
8
human-microbiota-associated mice
8
luciferase activity
8
luciferase mrna
8
luciferase
6
casei
5
promoters
5
differential activities
4
activities lactobacillus
4

Similar Publications

: Live microorganisms, named probiotics, can improve overall physical well-being, particularly the oral cavity's health. , a popular probiotic, can influence the immune response by increasing the number of macrophages and plasma cells that play a role in traumatic ulcer healing. : To determine the expression of tumor necrosis factor-alpha (TNF-α) and the varied number of plasma cells and macrophages on a traumatic ulcer animal model treated with topical or systemic administration of a probiotic : Thirty-six healthy, 2-3-month-old male weighing 175-250 gram, were designed into control and topical and systemic administration probiotic groups.

View Article and Find Full Text PDF

Gram-positive bacterial pneumonia is a significant cause of hospitalization and death. Shortage of a good experimental model and therapeutic targets hinders the cure of acute lung injury (ALI). This study has established a mouse model of ALI using Gram-positive bacteria Lactobacillus casie cell wall extracts (LCWE) and identified the key regulator NLRP3.

View Article and Find Full Text PDF

Lactic acid (LA) is a versatile, optically active compound with applications across the food, cosmetics, pharmaceutical, and chemical industries, largely driven by its role in producing biodegradable polylactic acid (PLA). Due to its abundance, lignocellulosic biomass is a promising and sustainable resource for LA production, although media derived from these matrices are often rich in xylose and contain growth inhibitors. This study investigates LA production using a xylose-rich medium derived from DC stalks treated through steam explosion and enzymatic hydrolysis.

View Article and Find Full Text PDF

Oleogels (organogels) are systems resembling a solid substance based on the gelation of organic solvents (oil or non-polar liquid) through components of low molecular weight or oil-soluble polymers. Such compounds are organogelators that produce a thermoreversible three-dimensional gel network that captures liquid organic solvents. Oleogels based on natural oils are attracting more attention due to their numerous advantages, such as their unsaturated fatty acid contents, ease of preparation, and safety of use.

View Article and Find Full Text PDF

Utilizing Lactic Acid Bacteria to Improve Hyperlipidemia: A Comprehensive Analysis from Gut Microbiota to Metabolic Pathways.

Foods

December 2024

State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

Hyperlipidemia poses significant risks for cardiovascular diseases, with emerging evidence underscoring the critical role of gut microbiota in metabolic regulation. This study explores CAAS36, a probiotic strain with promising cholesterol-lowering capabilities, assessing its impact on hyperlipidemic hamsters. Utilizing 1H NMR-based metabolomics and 16S rRNA gene sequencing, we observed that CAAS36 treatment not only altered metabolic pathways but also reshaped gut microbiota composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!