Astrocyte-derived transforming growth factor-{beta} mediates the neuroprotective effects of 17{beta}-estradiol: involvement of nonclassical genomic signaling pathways.

Endocrinology

Institute of Molecular Medicine and Genetics, Program in Developmental Neurobiology, 1120 15th Street, Medical College of Georgia, Augusta, Georgia 30912, USA.

Published: June 2005

17beta-Estradiol (E2) and selective estrogen receptor modulators (SERMs), such as tamoxifen, mediate numerous effects in the brain, including neurosecretion, neuroprotection, and the induction of synaptic plasticity. Astrocytes, the most abundant cell type in the brain, influence many of these same functions and thus may represent a mediator of estrogen action. The present study examined the regulatory effect and underlying cell signaling mechanisms of E2-induced release of neurotropic growth factors from primary rat cortical astrocyte cultures. The results revealed that E2 (0.5, 1, and 10 nm) and tamoxifen (1 mum) increased both the expression and release of the neuroprotective cytokines, TGF-beta1 and TGF-beta2 (TGF-beta), from cortical astrocytes. The stimulatory effect of E2 was attenuated by the estrogen receptor (ER) antagonist, ICI182,780, suggesting ER dependency. The effect of E2 also appeared to involve mediation by the phosphotidylinositol 3-kinase (PI3K)/Akt signaling pathway, because E2 rapidly induced Akt phosphorylation, and pharmacological or molecular inhibition of the PI3K/Akt pathway prevented E2-induced release of TGF-beta. Additionally, the membrane-impermeant conjugate, E2-BSA, stimulated the release of TGF-beta, suggesting the potential involvement of a membrane-bound ER. Finally, E2, tamoxifen, and E2-BSA were shown to protect neuronal-astrocyte cocultures from camptothecin-induced neuronal cell death, effects that were attenuated by ICI182,780, Akt inhibition, or TGF-beta immunoneutralization. As a whole, these studies suggest that E2 induction of TGF-beta release from cortical astrocytes could provide a mechanism of neuroprotection, and that E2 stimulation of TGF-beta expression and release from astrocytes occurs via an ER-dependent mechanism involving mediation by the PI3K/Akt signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2005-0014DOI Listing

Publication Analysis

Top Keywords

estrogen receptor
8
e2-induced release
8
expression release
8
cortical astrocytes
8
pi3k/akt signaling
8
signaling pathway
8
release tgf-beta
8
release
6
tgf-beta
6
astrocyte-derived transforming
4

Similar Publications

Estrogen hormones are primarily associated with their role as female sex hormones responsible for primary and secondary sexual development. Estrogen receptors are known to undergo age-dependent decreases due to age-related changes in hormone production. In the mitochondria, estrogen functions by reducing the production of reactive oxygen species in the electron transport chain, inhibiting apoptosis, and regulating mitochondrial DNA content.

View Article and Find Full Text PDF

In May 2021, the M/V ship fire disaster led to the largest maritime spill of resin pellets (nurdles) and burnt plastic (pyroplastic). Field samples collected from beaches in Sri Lanka nearest to the ship comprised nurdles and pieces of pyroplastic. Three years later, the toxicity of the spilled material remains unresolved.

View Article and Find Full Text PDF

Patients with estrogen receptor-positive (ER+), human epidermal growth factor receptor 2-negative (HER2-) primary breast cancer (BC) have low pathological complete response (pCR) rates with neoadjuvant chemotherapy. A subset of ER+/HER2- BC contains dense lymphocytic infiltration. We hypothesized that addition of an anti-programmed death 1 agent may increase pCR rates in this BC subtype.

View Article and Find Full Text PDF

Addition of pembrolizumab to neoadjuvant chemotherapy followed by adjuvant pembrolizumab improved outcomes in patients with high-risk, early-stage, triple-negative breast cancer. However, whether the addition of neoadjuvant pembrolizumab to chemotherapy would improve outcomes in high-risk, early-stage, estrogen receptor-positive/human epidermal growth factor receptor 2-negative (ER/HER2) breast cancer remains unclear. We conducted a double-blind, placebo-controlled phase 3 study (KEYNOTE-756) in which patients with previously untreated ER/HER2 grade 3 high-risk invasive breast cancer (T1c-2 (≥2 cm), cN1-2 or T3-4, cN0-2) were randomly assigned (1:1) to neoadjuvant pembrolizumab 200 mg or placebo Q3W given with paclitaxel QW for 12 weeks, followed by four cycles of doxorubicin or epirubicin plus cyclophosphamide Q2W or Q3W.

View Article and Find Full Text PDF

The imbalance between estrogen and androgen may be an important mechanism of BPH, but the specific mechanism remains unclear. We used mixed sustained-release pellets made of testosterone and estradiol (T + E) to stimulate the establishment of a BPH rat model. Compared to the prostate hyperplasia rat model using only androgens, the new prostate hyperplasia rat model can be observed to have better macroscopic and pathological characteristics of prostate hyperplasia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!