Src is necessary and sufficient for human airway smooth muscle cell proliferation and migration.

FASEB J

Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania, 421 Curie Blvd., BRB II/III, Philadelphia, PA 19104-6160, USA.

Published: March 2005

Airway smooth muscle (ASM) hypertrophy and hyperplasia, important pathological features in chronic severe asthma, likely contribute to irreversible airflow obstruction. Despite considerable research effort, the precise cellular mechanisms that modulate ASM growth remain unknown. Src, a nonreceptor tyrosine kinase proto-oncogene, reportedly modulates cell proliferative responses to growth factors, contractile agonists, and inflammatory mediators. Here, we show that Src activation is required for human ASM mitogenesis and motility. Platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and thrombin induce rapid activation of Src, and inhibition of Src induces a concentration-dependent abrogation of PDGF-, EGF-, and thrombin-induced ASM cell proliferation. Src immunoprecipitates had associated phosphatidylinositol 3-kinase, or PI3K, activation in response to PDGF and thrombin but not EGF. Further, Src activation is both necessary and sufficient for the stimulation of DNA synthesis as demonstrated by dominant negative Src inhibition of PDGF-, EGF-, and thrombin-induced DNA synthesis. Human ASM cell migration was also attenuated by transfection of cells with dominant negative Src. Further, expression of constitutively active Src promoted cell migration. Collectively, these data demonstrate that Src modulates human ASM cell proliferation and migration, suggesting that Src may play an important role in promoting ASM cell growth and migration that occur in airway remodeling found in asthma and chronic obstructive pulmonary disease, or COPD.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.04-2869fjeDOI Listing

Publication Analysis

Top Keywords

asm cell
16
src
12
cell proliferation
12
human asm
12
airway smooth
8
smooth muscle
8
proliferation migration
8
src activation
8
growth factor
8
src inhibition
8

Similar Publications

Chronic obstructive pulmonary disease (COPD) is characterized by progressive and incurable airflow obstruction and chronic inflammation. Both TGF-β1 and CXCL8 have been well described as fundamental to COPD progression. DNA methylation and histone acetylation, which are well-understood epigenetic mechanisms regulating gene expression, are associated with COPD progression.

View Article and Find Full Text PDF

Objective: In severe equine asthma, structural remodeling of the airways ultimately leads to bronchial wall thickening and airflow obstruction. Increased bronchial vascularization has been described in horses affected by the severe form of the disease, but whether it contributes to bronchial remodeling in milder forms of asthma remains to be determined. In a blinded, retrospective case-control study, we evaluated the presence of bronchial angiogenesis in horses with mild and moderate equine asthma (MEA) and its correlation to airway smooth muscle remodeling.

View Article and Find Full Text PDF

Cholinergic tone is elevated in obstructive lung conditions such as COPD and asthma, but the cellular mechanisms underlying cholinergic contractions of airway smooth muscle (ASM) are still unclear. Some studies report an important role for L-type Ca channels (LTCC) and Ano1 Ca-activated Cl™ channels (CACC) in these responses, but others dispute their importance. Cholinergic contractions of ASM involve activation of M3Rs, however stimulation of M2Rs exerts a profound hypersensitisation of these responses.

View Article and Find Full Text PDF

Oxylipin Profiling of Airway Structural Cells Is Unique and Modified by Relevant Stimuli.

J Proteome Res

January 2025

Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E0J9, Canada.

Article Synopsis
  • Oxylipins, which are lipid mediators derived from fatty acids, play crucial roles in respiratory health, but their profiles in lung structural cells are not fully understood.
  • The study measured 162 oxylipins in airway smooth muscle, lung fibroblasts, and epithelial cells, both at baseline and after exposure to various stimuli.
  • Results showed that airway smooth muscle and lung fibroblasts had similar oxylipin profiles dominated by CYP450 metabolites, while epithelial cells had a unique profile rich in COX-derived oxylipins, with distinct changes noted upon stimulation that could impact respiratory function.
View Article and Find Full Text PDF

The role of third component in coumarin-based all-small-molecule ternary organic solar cells with non-fullerene acceptor based on molecular stacking.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China; State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China. Electronic address:

The power conversion efficiency (PCE) of ternary all-small-molecule organic solar cells (T-ASM-OSCs) differs significantly from that of the polymer systems (2 %), and the role of third component remains unclear. The electron donor of coumarin derivatives with simple structure and strong and broad light absorption has high PCE for T-ASM-OSCs composed of non-fullerene acceptors (Y6 and DBTBT-IC). Here, we calculated the electronic structure and interfacial properties of the binary C1-CN:Y6 and ternary C1-CN:Y6:DBTBT-IC systems using molecular dynamic (MD) simulations and density functional theory (DFT) to explore the role of the third component (DBTBT-IC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!