In the mammalian heart, a variety of voltage-gated Na(+) channel transcripts and proteins have been detected. However, little quantitative information is available on the abundance of each transcript during development, or the contribution of TTX-sensitive Na(+) channels to the cardiac sodium current (I(Na)). Using competitive and real-time RT-PCR we investigated the transcription of six Na(+) channels (Na(v)1.1-Na(v)1.6) and the beta1 subunit during mouse heart development. Na(v)1.5 was predominantly expressed in the adult heart, whereas the splice variant Na(v)1.5a was the major Na(+) channel isoform in embryonic hearts. The TTX-resistant Na(+) channel transcripts (Na(v)1.5 and Na(v)1.5a) increased 1.7-fold during postnatal development. Transcripts encoding TTX-sensitive Na(+) channels (Na(v)1.1-Na(v)1.4) and the beta1 subunit gradually increased up to fourfold from postnatal day (P)1 to P126, while the Na(v)1.6 transcript level remained low and constant over the same period. In adults, TTX-sensitive channel mRNA accounted for 30-40% of the channel pool in whole-heart preparations (Na(v)1.3 > Na(v)1.4 > Na(v)1.2 >> Na(v)1.1 approximately Na(v)1.6), and 16% in mRNA from isolated cardiomyocytes (Na(v)1.4 > Na(v)1.3 > Na(v)1.2 > Na(v)1.1 > Na(v)1.6). Confocal immunofluorescence on ventricular myocytes suggested that Na(v)1.1 and Na(v)1.2 were localized at the intercalated disks and in the t tubules. Na(v)1.3 labelling predominantly produced a diffuse but strong intracellular signal. Na(v)1.6 fluorescence was detected only along the Z lines. Electrophysiological recordings showed that TTX-sensitive and TTX-resistant Na(+) channels, respectively, accounted for 8% and 92% of the I(Na) in adult ventricular cardiomyocytes. Our data suggest that neuronal and skeletal muscle Na(+) channels contribute to the action potential of cardiomyocytes in the adult mammalian heart.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1464457PMC
http://dx.doi.org/10.1113/jphysiol.2004.079681DOI Listing

Publication Analysis

Top Keywords

na+ channels
24
na+ channel
12
na+
9
neuronal skeletal
8
skeletal muscle
8
voltage-gated na+
8
mouse heart
8
mammalian heart
8
channel transcripts
8
ttx-sensitive na+
8

Similar Publications

Pigmentation is orchestrated by hundreds of genes involved in cellular functions going from early developmental fate of pigment cells to melanin synthesis. The Two Pore Channel 2 (TPC2) a Ca2+ and Na+ channel acidifies melanosomal pH and thus inhibits pigmentation. A young patient was recently reported with generalized hypopigmentation but uneventful ocular examination, caused by the de novo heterozygous TPCN2 variant c.

View Article and Find Full Text PDF

Purpose: The major cardiac voltage-gated sodium channel Na1.5 (I) is essential for cardiac action potential initiation and subsequent propagation. Compound Chinese medicine Wenxin Keli (WXKL) has been shown to suppress arrhythmias and heart failure.

View Article and Find Full Text PDF

The shape of biological matter is central to cell function at different length scales and determines how cellular components recognize, interact and respond to one another. However, their shapes are often transient and hard to reprogramme. Here we construct a synthetic cell model composed of signal-responsive DNA nanorafts, biogenic pores and giant unilamellar vesicles (GUVs).

View Article and Find Full Text PDF

Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.

View Article and Find Full Text PDF

Opening of the cardiac voltage-gated Na+ channel (Nav1.5) is responsible for robust depolarization of the cardiac action potential, while inactivation, which rapidly follows, allows for repolarization. Regulation of both the voltage- and time-dependent kinetics of Nav1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!