This study investigated the effects of elevated, physiological levels of intracellular free [Ca(2+)] on depolarization-induced force responses, and on passive and active force production by the contractile apparatus in mechanically skinned fibres of toad iliofibularis muscle. Excitation-contraction (EC) coupling was retained after skinning and force responses could be elicited by depolarization of the transverse-tubular (T-) system. Raising the cytoplasmic [Ca(2+)] to approximately 1 microm or above for 3 min caused an irreversible reduction in the depolarization-induced force response by interrupting the coupling between the voltage sensors in the T-system and the Ca(2+) release channels in the sarcoplasmic reticulum. This uncoupling showed a steep [Ca(2+)] dependency, with 50% uncoupling at approximately 1.9 microm Ca(2+). The uncoupling occurring with 2 microm Ca(2+) was largely prevented by the calpain inhibitor leupeptin (1 mm). Raising the cytoplasmic [Ca(2+)] above 1 microm also caused an irreversible decline in passive force production in stretched skinned fibres in a manner graded by [Ca(2+)], though at a much slower relative rate than loss of coupling. The progressive loss of passive force could be rapidly stopped by lowering [Ca(2+)] to 10 nm, and was almost completely inhibited by 1 mm leupeptin but not by 10 microm calpastatin. Muscle homogenates preactivated by Ca(2+) exposure also evidently contained a diffusible factor that caused damage to passive force production in a Ca(2+)-dependent manner. Western blotting showed that: (a) calpain-3 was present in the skinned fibres and was activated by the Ca(2+)exposure, and (b) the Ca(2+) exposure in stretched skinned fibres resulted in proteolysis of titin. We conclude that the disruption of EC coupling occurring at elevated levels of [Ca(2+)] is likely to be caused at least in part by Ca(2+)-activated proteases, most likely by calpain-3, though a role of calpain-1 is not excluded.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1464466 | PMC |
http://dx.doi.org/10.1113/jphysiol.2004.082180 | DOI Listing |
Int J Biol Macromol
January 2025
College of Textile and Clothing Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China; Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), 215123, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China. Electronic address:
Conductive organohydrogel fibers based on sodium alginate (SA) exhibit remarkable flexibility and electrical conductivity, making them ideal candidates for conformal skin adhesion and real-time monitoring of human activity signals. However, traditional conductive hydrogels often suffer from issues such as uneven distribution of conductive fillers, and achieving the integration of high mechanical strength, stretchability, and transparency using environmentally friendly methods remains a significant challenge. In this study, a novel and sustainable strategy was developed to fabricate dual-network organohydrogel fibers using sodium alginate as the primary material.
View Article and Find Full Text PDFBiomaterials
January 2025
Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China. Electronic address:
The chronic inflammation and matrix metalloprotease (MMP)-induced tissue degradation significantly disrupt re-epithelization and delay the healing process of diabetic wounds. To address these issues, we produced nanofibrils from Antheraea pernyi (Ap) silk fibers via a facile and green treatment of swelling and shearing. The integrin receptors on the cytomembrane could specifically bind to the Ap nanofibrils (ApNFs) due to their inherent Arg-Gly-Asp (RGD) motifs, which activated platelets to accelerate coagulation and promoted fibroblast migration, adhesion and spreading.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh.
Tinospora cordifolia extract exhibits diverse benefits-anti-arthritis, anti-malarial, anti-allergic, anti-diabetic, antihepatotoxic, and antipyretic effects. Its specific anti-inflammatory and healing capacities remain unexplored, prompting a study utilizing a mouse skin wound model and direct T. cordifolia extraction.
View Article and Find Full Text PDFInspired by human skin, bionic tactile sensing is effectively promoting development and innovation in many fields with its flexible and efficient perception capabilities. Optical fiber, with its ability to perceive and transmit information and its flexible characteristics, is considered a promising solution in the field of tactile bionics. In this work, one optical fiber tactile sensing system based on a flexible PDMS-embedded optical fiber ring resonator (FRR) is designed for braille recognition, and the Pound-Drever-Hall (PDH) demodulation scheme is adopted to improve the detection sensitivity.
View Article and Find Full Text PDFConnect Tissue Res
January 2025
Graduate School of Engineering, Kogakuin University, Hachioji, Tokyo, Japan.
Objective: This study aimed to investigate the collagen fiber structure of the subcutaneous fascia, a connective tissue layer between the skin and epimysium.
Methods: Fascia samples with varying extensibility were examined using biochemical and microscopic methods.
Results: Loose fascia, the more extensible type, displayed sparsely distributed collagen fibers, while dense fascia showed tightly packed collagen fiber bundles.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!