Purpose: The poor immunogenicity of tumor antigens and the antigenic heterogeneity of tumors call for vaccine strategies to enhance T-cell responses to multiple antigens. Two antigens expressed noncoordinately on most human carcinomas are carcinoembryonic antigen (CEA) and MUC-1. We report here the construction and characterization of two viral vector vaccines to address these issues.

Experimental Design: The two viral vectors analyzed are the replication-competent recombinant vaccinia virus (rV-) and the avipox vector, fowlpox (rF-), which is replication incompetent in mammalian cells. Each vector encodes the transgenes for three human costimulatory molecules (B7-1, ICAM-1, and LFA-3, designated TRICOM) and the CEA and MUC-1 transgenes (which also contain agonist epitopes). The vectors are designated rV-CEA/MUC/TRICOM and rF-CEA/MUC/TRICOM.

Results: Each of the vectors is shown to be capable of faithfully expressing all five transgenes in human dendritic cells (DC). DCs infected with either vector are shown to activate both CEA- and MUC-1-specific T-cell lines to the same level as DCs infected with CEA-TRICOM or MUC-1-TRICOM vectors. Thus, no evidence of antigenic competition between CEA and MUC-1 was observed. Human DCs infected with rV-CEA/MUC/TRICOM or rF-CEA/MUC/TRICOM are also shown to be capable of generating both MUC-1- and CEA-specific T-cell lines; these T-cell lines are in turn shown to be capable of lysing targets pulsed with MUC-1 or CEA peptides as well as human tumor cells endogenously expressing MUC-1 and/or CEA.

Conclusion: These studies provide the rationale for the clinical evaluation of these multigene vectors in patients with a range of carcinomas expressing MUC-1 and/or CEA.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-04-1609DOI Listing

Publication Analysis

Top Keywords

cea muc-1
12
dcs infected
12
t-cell lines
12
recombinant vaccinia
8
expressing transgenes
8
transgenes human
8
human tumor
8
tumor antigens
8
three human
8
human costimulatory
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!