The glutamate receptor (GluR) agonist-binding site consists of amino acid residues in the extracellular S1 and S2 domains in the N-terminal and M3-M4 loop regions, respectively. In the present study, we sought to confirm that the conserved ligand-binding residues identified in the AMPA receptor S1S2 domains also participate in ligand binding of GluR6 kainate receptors. Amino acid substitutions were made in the GluR6 parent at R523, T690, and E738 to alter their potential interactions with ligand. Mutant receptors were expressed in human embryonic kidney 293 cells, confirmed by Western blot analysis, and tested by [3H]kainate binding and patch-clamp recording. Each of the binding site mutations was sufficient to reduce [3H]kainate binding to undetectable levels and eliminate functional responses to glutamate or kainate. As with our studies of other nonfunctional mutants (Fleck et al., 2003), immunocytochemical staining and cell-surface biotinylation studies showed that the mutant receptors were retained intracellularly and did not traffic to the cell surface. Endoglycosidase-H digests and colocalization with endoplasmic reticulum (ER) markers demonstrated that the mutant receptors are immaturely glycosylated and retained in the ER. Immunoprecipitation, native PAGE, and functional studies confirmed that the GluR6-binding site mutants are capable of multimeric assembly, indicating their retention in the ER does not result from a gross protein folding error. Together, these results confirm the role of R523, T690, and E738 directly in ligand binding to GluR6 and further support our previous report that nonfunctional GluRs are retained intracellularly by a functional checkpoint in ER quality control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6726086PMC
http://dx.doi.org/10.1523/JNEUROSCI.4573-04.2005DOI Listing

Publication Analysis

Top Keywords

ligand binding
12
mutant receptors
12
glutamate receptor
8
endoplasmic reticulum
8
quality control
8
amino acid
8
binding glur6
8
r523 t690
8
t690 e738
8
[3h]kainate binding
8

Similar Publications

Cancer-associated fibroblasts (CAFs) are intrinsic components of the tumor microenvironment that promote cancer progression and metastasis. Through an unbiased integrated analysis of gastric tumor grade and stage, we identified a subset of proangiogenic CAFs characterized by high podoplanin (PDPN) expression, which are significantly enriched in metastatic lesions and secrete chemokine (CC-motif) ligand 2 (CCL2). Mechanistically, PDPN(+) CAFs enhance angiogenesis by activating the AKT/NF-κB signaling pathway.

View Article and Find Full Text PDF

It is well known that activation of NMDA receptors can trigger long-term synaptic depression (LTD) and that a morphological correlate of this functional plasticity is spine retraction and elimination. Recent studies have led to the surprising conclusion that NMDA-induced spine shrinkage proceeds independently of ion flux and requires the initiation of protein synthesis, highlighting an unappreciated contribution of mRNA translation to non-ionotropic NMDAR signaling. Here we used NMDA-induced spine shrinkage in slices of mouse hippocampus as a readout to investigate this novel modality of synaptic transmission.

View Article and Find Full Text PDF

Short linear peptide motifs play important roles in cell signaling. They can act as modification sites for enzymes and as recognition sites for peptide binding domains. SH2 domains bind specifically to tyrosine-phosphorylated proteins, with the affinity of the interaction depending strongly on the flanking sequence.

View Article and Find Full Text PDF

The interaction between meiosis-expressed gene 1 (MEIG1) and Parkin co-regulated gene (PACRG) is a critical determinant of spermiogenesis, the process by which round spermatids mature into functional spermatozoa. Disruption of the MEIG1-PACRG complex can impair sperm development, highlighting its potential as a therapeutic target for addressing male infertility or for the development of non-hormonal contraceptive methods. This study used virtual screening, molecular docking, and molecular dynamics (MD) simulations to identify small molecule inhibitors targeting the MEIG1-PACRG interface.

View Article and Find Full Text PDF

In the human heart, the binding of cyclic adenosine monophosphate (cAMP), a second messenger, to hyperpolarization and cyclic nucleotide-gated (HCN) regulates the automaticity of pacemaker cells. Recent single-molecule binding studies show that cAMP bound to each subunit of purified tetrameric HCN channels independently, in contrast to findings in cells. To explore the lipid membrane's role in cAMP regulation, we reconstituted purified human HCN channels in various lipid nanodiscs and resolved single molecule ligand-binding dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!