Photooxidative treatment of sulfurous water for its potabilization.

Photochem Photobiol

Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, México.

Published: October 2005

The feasibility of potabilization of sulfurous water was investigated by photochemical oxidation processes using a batch photoreactor and a continuous-flow photoreactor, equipped with UV lamps of 1000 W and 1500 W, respectively. Additionally, two advanced processes of oxidation were applied i.e. with a use of a UV light/H2O2/air and UV light/H2O2/O3/air. These two processes were compared for their efficiency to the direct oxidation process where ozone is used in the absence of UV light. Results obtained for both advanced processes showed better oxidation than takes place by ozone in the absence of UV light. After the photooxidation processes, different processes for the absorption or precipitation of sulfates were investigated to comply with the World Health Organization (WHO) norm that demands a limit of < or =250 mg L(-1) of SO4(2-) in drinking water. Additionally, reverse osmosis was simulated using Osmonics Inc. software to predict the feasibility of lowering the salt concentration below WHO limits.

Download full-text PDF

Source
http://dx.doi.org/10.1562/2004-12-13-RA-401DOI Listing

Publication Analysis

Top Keywords

sulfurous water
8
advanced processes
8
ozone absence
8
absence light
8
processes
6
photooxidative treatment
4
treatment sulfurous
4
water potabilization
4
potabilization feasibility
4
feasibility potabilization
4

Similar Publications

Validating thermodynamic models is essential in experimental geosciences for exploring increasingly complex systems and developing analytical protocols. However, investigating solid-fluid equilibria in mm-sized experimental capsules poses several challenges, particularly in sulfur-bearing chemical systems. These include maintaining bulk fluid composition and performing quantitative analysis with extremely low amounts of synthesized fluid.

View Article and Find Full Text PDF

A new insight on simultaneous water purification and greenhouse gas reduction by constructing sulfur-siderite driven autotrophic denitrification pathways in constructed wetlands.

Water Res

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, China. Electronic address:

Sulfur-siderite driven autotrophic denitrification (SSAD) has received increasing attention for nutrient removal in constructed wetlands (CWs). Nevertheless, its effectiveness in simultaneous water purification and greenhouse gases (GHGs) reduction remains obscure. In this study, three vertical flow constructed wetlands (VFCWs), filled with quartz sand (CCW), sulfur (S-CW), and sulfur-siderite mixed substrates (SS-CW), were constructed to investigate the underlying mechanisms of SSAD on water purification enhancement and GHGs reduction.

View Article and Find Full Text PDF

The performance of Upflow Anaerobic Sludge Blanket (UASB) bioreactors treating sulfate (SO) -rich effluents depends on multiple factors, including microbial interactions and operational conditions. The high complexity of these systems necessitates the use of mathematical modelling tools to better understand the process and predict the long-term impacts of various operational variables. In this work, a mathematical model describing the long-term operation of a sulfate-fed 2.

View Article and Find Full Text PDF

Activated carbon textile (C-Text) was chemically modified to incorporate oxygen- (C-Text-O), nitrogen- (C-Text-ON), and/or sulfur- (C-Text-OS) containing surface functional groups, aiming to enhance their reactive adsorption capacity. The modified textiles were evaluated for their ability to detoxify 2-choloroethyl ethyl sulfide (CEES) in both vapor and liquid phases, under dry and humid conditions. The maximum amount of water adsorbed was directly affected by the surface area (R = 0.

View Article and Find Full Text PDF

Unlabelled: The redox conditions in the littoral limnic sediments may be affected by the penetration of plant roots which provide channels for oxygen transport into the sediment while decomposition of the dead roots results in consumption of oxygen. The goal of this work was to study the impact of environmental parameters including penetration of roots of L. into the sediments on cycling of the redox-sensitive elements in Lake Kinneret.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!