The feasibility of potabilization of sulfurous water was investigated by photochemical oxidation processes using a batch photoreactor and a continuous-flow photoreactor, equipped with UV lamps of 1000 W and 1500 W, respectively. Additionally, two advanced processes of oxidation were applied i.e. with a use of a UV light/H2O2/air and UV light/H2O2/O3/air. These two processes were compared for their efficiency to the direct oxidation process where ozone is used in the absence of UV light. Results obtained for both advanced processes showed better oxidation than takes place by ozone in the absence of UV light. After the photooxidation processes, different processes for the absorption or precipitation of sulfates were investigated to comply with the World Health Organization (WHO) norm that demands a limit of < or =250 mg L(-1) of SO4(2-) in drinking water. Additionally, reverse osmosis was simulated using Osmonics Inc. software to predict the feasibility of lowering the salt concentration below WHO limits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1562/2004-12-13-RA-401 | DOI Listing |
Commun Chem
January 2025
Dipartimento di Scienze Della Terra, Università Degli Studi di Milano, via Mangiagalli 34, I-20133, Milano, Italy.
Validating thermodynamic models is essential in experimental geosciences for exploring increasingly complex systems and developing analytical protocols. However, investigating solid-fluid equilibria in mm-sized experimental capsules poses several challenges, particularly in sulfur-bearing chemical systems. These include maintaining bulk fluid composition and performing quantitative analysis with extremely low amounts of synthesized fluid.
View Article and Find Full Text PDFWater Res
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, China. Electronic address:
Sulfur-siderite driven autotrophic denitrification (SSAD) has received increasing attention for nutrient removal in constructed wetlands (CWs). Nevertheless, its effectiveness in simultaneous water purification and greenhouse gases (GHGs) reduction remains obscure. In this study, three vertical flow constructed wetlands (VFCWs), filled with quartz sand (CCW), sulfur (S-CW), and sulfur-siderite mixed substrates (SS-CW), were constructed to investigate the underlying mechanisms of SSAD on water purification enhancement and GHGs reduction.
View Article and Find Full Text PDFWater Res
January 2025
Department of Civil and Environmental Engineering, University of Florence, Via di S. Marta, 3, 50139, Firenze, Italy.
The performance of Upflow Anaerobic Sludge Blanket (UASB) bioreactors treating sulfate (SO) -rich effluents depends on multiple factors, including microbial interactions and operational conditions. The high complexity of these systems necessitates the use of mathematical modelling tools to better understand the process and predict the long-term impacts of various operational variables. In this work, a mathematical model describing the long-term operation of a sulfate-fed 2.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Ave., New York, NY 10031, United States. Electronic address:
Activated carbon textile (C-Text) was chemically modified to incorporate oxygen- (C-Text-O), nitrogen- (C-Text-ON), and/or sulfur- (C-Text-OS) containing surface functional groups, aiming to enhance their reactive adsorption capacity. The modified textiles were evaluated for their ability to detoxify 2-choloroethyl ethyl sulfide (CEES) in both vapor and liquid phases, under dry and humid conditions. The maximum amount of water adsorbed was directly affected by the surface area (R = 0.
View Article and Find Full Text PDFLimnology (Tokyo)
July 2024
Department of Geological and Environmental Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer Sheva, Israel.
Unlabelled: The redox conditions in the littoral limnic sediments may be affected by the penetration of plant roots which provide channels for oxygen transport into the sediment while decomposition of the dead roots results in consumption of oxygen. The goal of this work was to study the impact of environmental parameters including penetration of roots of L. into the sediments on cycling of the redox-sensitive elements in Lake Kinneret.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!