The role of cytochrome P450 activity in the nephrotoxicity of chlorotrifluoroethylene (CTFE) and 1,1-dichloro-2,2-difluoroethylene (DCDFE) was investigated in the male rat. Hepatic cytochrome P450 1A1 and principally P450 2B1/2 were induced by beta-naphthoflavone and phenobarbital, respectively. Nephrotoxicity was evaluated by investigating urine biochemical parameters, kidney histochemistry and histopathological modifications. Both CTFE and DCDFE induce severe nephrotoxicity in rats after 4 h of exposure to 200 and 100 ppm, respectively. Compared with controls, activity levels of gamma-glutamyltranspeptidase (gamma GT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and N-acetyl-beta-D-glucosaminidase (NAG) in 24-h urine were increased similarly, but urinary excretion of glucose, proteins and beta2-microglobulin (beta2-m) and serum urea and creatinine levels were increased. Histopathological and histochemical examinations of kidney sections of CTFE- and DCDFE-exposed rats revealed cellular necrosis and tubular lesions 24 h after exposure. Beta-naphthoflavone-pretreated rats were afforded some protection against the nephrotoxicity of CTFE and DCDFE. Phenobarbital did not modify DCDFE nephrotoxicity but afforded some protection against CTFE nephrotoxicity. In conclusion, CTFE and DCDFE are strong nephrotoxins. Cytochrome P450 1A1 is implicated in CTFE and DCDFE metabolism and one or several cytochromes induced by phenobarbital are implicated in CTFE metabolism. The P450 cytochromes involved in CTFE and DCDFE metabolism probably constitute detoxication metabolic pathways. The nephrotoxicity of CTFE and DCDFE is therefore subordinated to the cytochrome P450 activity involved in their metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jat.1048 | DOI Listing |
J Appl Toxicol
July 2005
Institut National de Recherche et de Sécurité, Avenue de Bourgogne, BP 27, 54501 Vandoeuvre, France.
The role of cytochrome P450 activity in the nephrotoxicity of chlorotrifluoroethylene (CTFE) and 1,1-dichloro-2,2-difluoroethylene (DCDFE) was investigated in the male rat. Hepatic cytochrome P450 1A1 and principally P450 2B1/2 were induced by beta-naphthoflavone and phenobarbital, respectively. Nephrotoxicity was evaluated by investigating urine biochemical parameters, kidney histochemistry and histopathological modifications.
View Article and Find Full Text PDFChem Res Toxicol
February 1997
Leiden/Amsterdam Center for Drug Research, Department of Pharmacochemistry, The Netherlands.
The covalent binding of reactive intermediates, formed by beta-elimination of cysteine S-conjugates of halogenated alkenes, to nucleophiles was studied using 19F-NMR and GC-MS analysis. beta-Elimination reactions were performed using rat renal cytosol and a beta-lyase model system, consisting of pyridoxal and copper(II) ion. S-(1,1,2,2-Tetrafluoroethyl)-L-cysteine (TFE-Cys) was mainly converted to products derived from difluorothionoacetyl fluoride, namely, difluorothionoacetic acid, difluoroacetic acid, and N-difluorothionoacetylated TFE-Cys.
View Article and Find Full Text PDFBiochem Pharmacol
June 1991
Department of Pharmacochemistry, Free University, Amsterdam, The Netherlands.
The relationship between the relative nephrotoxicity of the mercapturic acids (NAc) of the fluorinated ethylenes tetrafluoroethylene (TFE), chlorotrifluoroethylene (CTFE), 1,1-dichloro-2,2-difluoroethylene (DCDFE) and 1,1-dibromo-2,2-difluoroethylene (DBDFE), and the biotransformation by activating (N-deacetylase and beta-lyase) and inactivating (N-acetyltransferase) enzymes was studied in the rat. After intraperitoneal (i.p.
View Article and Find Full Text PDFBiochem Pharmacol
November 1989
Division of Toxicology, Leiden University, The Netherlands.
Isolated proximal tubular cells from rat kidney were incubated with the cysteine-S-conjugates and corresponding mercapturates of the potent nephrotoxicants tetrafluoroethylene (TFE), chlorotrifluoroethylene (CTFE), 1,1-dichloro-2,2-difluoroethylene (DCDFE) and 1,1-dibromo-2,2-difluoroethylene (DBDFE). Toxicity of these S-conjugates was determined by their ability to inhibit alpha-methylglucose uptake by the cells. The cytotoxicity of the cysteine-S-conjugates and mercapturates of TFE and CTFE was similar, but the cysteine-S-conjugates of DCDFE and DBDFE were more toxic than their mercapturates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!