The organization of inorganic nanostructures within self-assembled organic or biological templates is receiving the attention of scientists interested in developing functional hybrid materials. Previous efforts have concentrated on using such scaffolds to spatially arrange nanoscopic elements as a strategy for tailoring the electrical, magnetic or photonic properties of the material. Recent theoretical arguments have suggested that synergistic interactions between self-organizing particles and a self-assembling matrix material can lead to hierarchically ordered structures. Here we show that mixtures of diblock copolymers and either cadmium selenide- or ferritin-based nanoparticles exhibit cooperative, coupled self-assembly on the nanoscale. In thin films, the copolymers assemble into cylindrical domains, which dictate the spatial distribution of the nanoparticles; segregation of the particles to the interfaces mediates interfacial interactions and orients the copolymer domains normal to the surface, even when one of the blocks is strongly attracted to the substrate. Organization of both the polymeric and particulate entities is thus achieved without the use of external fields, opening a simple and general route for fabrication of nanostructured materials with hierarchical order.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature03310 | DOI Listing |
Sci Robot
March 2021
Allen Discovery Center at Tufts University, Medford, MA 02155, USA.
Robot swarms have, to date, been constructed from artificial materials. Motile biological constructs have been created from muscle cells grown on precisely shaped scaffolds. However, the exploitation of emergent self-organization and functional plasticity into a self-directed living machine has remained a major challenge.
View Article and Find Full Text PDFACS Nano
November 2020
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Directed self-assembly (DSA) of block copolymers (BCPs) provides a powerful tool to fabricate various 2D nanostructures. However, it still remains a challenge to extend DSA to make uniform and complex 3D nanostructures through BCP self-assembly. In this paper, we introduce a method to fabricate various nanostructures in 3D and test it using simulations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2020
Department of Polymer Science and Engineering, Inha University, Incheon 22212, South Korea.
Micro- and nanotextured surfaces with reconfigurable textures can enable advancements in the control of wetting and heat transfer, directed assembly of complex materials, and reconfigurable optics, among many applications. However, reliable and programmable directional shape in large scale is significant for prescribed applications. Herein, we demonstrate the self-directed fabrication and actuation of large-area elastomer micropillar arrays, using magnetic fields to both program a shape-directed actuation response and rapidly and reversibly actuate the arrays.
View Article and Find Full Text PDFACS Nano
June 2019
Centre for Molecular Medicine Norway, Faculty of Medicine , University of Oslo, 0318 Oslo , Norway.
Cellular compartments are membrane-enclosed, spatially distinct microenvironments that confine and protect biochemical reactions in the biological cell. On the early Earth, the autonomous formation of compartments is thought to have led to the encapsulation of nucleotides, thereby satisfying a starting condition for the emergence of life. Recently, surfaces have come into focus as potential platforms for the self-assembly of prebiotic compartments, as significantly enhanced vesicle formation was reported in the presence of solid interfaces.
View Article and Find Full Text PDFChem Rec
July 2018
Chemistry Department and CQ-VR, University of Trás-os-Montes e Alto Douro Quinta de Prados, 5000-801, Vila Real, Portugal.
The development of sophisticated organized materials exhibiting enhanced properties is a challenging topic of the domain of organic/inorganic hybrid materials. This review, composed of four sections, reports the work we have carried out over the last 10 years on the synthesis of amide cross-linked alkyl/siloxane hybrids by means of sol-gel chemistry and self-directed assembly/self-organization routes relying on weak interactions (hydrophobic interactions and hydrogen bonding). The various as-produced lamellar structures displaying a myriad of morphologies, often closely resembling those found in natural materials, are discussed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!