Structural and functional characterization of PC2 and RNA polymerase II-associated subpopulations of metazoan Mediator.

Mol Cell Biol

Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Ave., #166, New York, NY 10021, USA.

Published: March 2005

The coactivator complexes TRAP/SMCC and PC2 represent two forms of Mediator. To further understand the implications of the heterogeneity of the cellular Mediator populations for regulation of RNA polymerase II (Pol II) transcription, we used a combination of affinity and conventional chromatographic methods. Our analysis revealed a spectrum of complexes, including some containing significant proportions of Pol II. Interestingly, the subunit composition of the Pol II-associated Mediator population resembled that of PC2 more closely than that of the larger TRAP/SMCC complex. In in vitro transcription assays reconstituted from homogeneous preparations of general transcription factors, Mediator-associated Pol II displayed a greater specific activity (relative to that of standard Pol II) in activator-independent (basal) transcription in addition to the previously described effects of Mediator on activator-dependent transcription. Purified PC2 complex also stimulated basal activity under these conditions. Immobilized template assays in which activator-recruited preinitiation complexes were allowed to undergo one cycle of transcription revealed partial disruption of Mediator that resulted in a PC2-like complex being retained in the scaffold. This result implies that PC2 could originate as a result of a normal cellular process. Our results are thus consistent with a dynamic nature of the Mediator complex and further extend the functional similarities between Saccharomyces cerevisiae and metazoan Mediator complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1061600PMC
http://dx.doi.org/10.1128/MCB.25.6.2117-2129.2005DOI Listing

Publication Analysis

Top Keywords

rna polymerase
8
mediator
8
metazoan mediator
8
transcription
6
pc2
5
pol
5
structural functional
4
functional characterization
4
characterization pc2
4
pc2 rna
4

Similar Publications

Since the precursor frequency of naive T cells is extremely low, investigating the early steps of antigen-specific T cell activation is challenging. To overcome this detection problem, adoptive transfer of a cohort of T cells purified from T cell receptor (TCR) transgenic donors has been extensively used but is not readily available for emerging pathogens. Constructing TCR transgenic mice from T cell hybridomas is a labor-intensive and sometimes erratic process, since the best clones are selected based on antigen-induced CD69 upregulation or IL-2 production in vitro, and TCR chains are polymerase chain reaction (PCR)-cloned into expression vectors.

View Article and Find Full Text PDF

Background: Machupo virus (MACV) is a New World mammarenavirus (hereafter referred to as "arenavirus") and the etiologic agent of Bolivian hemorrhagic fever (BHF). No vaccine or antiviral therapy exists for BHF, which causes up to 35% mortality in humans. New World arenaviruses evolve separately in different locations.

View Article and Find Full Text PDF

SPT5 regulates RNA polymerase II stability via Cullin 3-ARMC5 recognition.

Sci Adv

January 2025

Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.

The stability of RNA polymerase II (Pol II) is tightly regulated during transcriptional elongation for proper control of gene expression. Our recent studies revealed that promoter-proximal Pol II is destabilized via the ubiquitin E3 ligase cullin 3 (CUL3) upon loss of transcription elongation factor SPT5. Here, we investigate how CUL3 recognizes chromatin-bound Pol II as a substrate.

View Article and Find Full Text PDF

Crimean-Congo haemorrhagic fever virus (CCHFV), a Biosafety level 4 pathogen transmitted by ticks, causes severe haemorrhagic diseases in humans but remains clinically silent in animals. Over the past forty years, Nigeria lacks comprehensive genetic data on CCHFV in livestock and ticks. This study aimed to identify and characterize CCHFV strains in cattle and their Hyalomma ticks, the primary vector, in Kwara State, Nigeria.

View Article and Find Full Text PDF

Hepatitis C Virus (HCV) is a blood borne pathogen that affects around 200 million individuals worldwide. Immunizations against the Hepatitis C Virus are intended to enhance T-cell responses and have been identified as a crucial component of successful antiviral therapy. Nevertheless, attempts to mediate clinically relevant anti-HCV activity in people have mainly failed, despite the vaccines present satisfactory progress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!