Helicobacter pylori is a bacterium that colonizes the stomach of a majority of the global human population causing common gastric diseases like ulcers and cancer. It has an unusually complex pattern of binding to various host glycoconjugates including interaction with sialylated, sulfated, and fucosylated sequences. The present study describes an additional binding epitope comprising the neolacto internal sequence of GlcNAcbeta3-Galbeta4GlcNAcbeta. The binding was detected on TLC plates as an interaction with a seven-sugar ganglioside of rabbit thymus. The glycolipid was purified and characterized as Neu5Gcalpha3Galbeta4GlcNAcbeta3Galbeta4GlcNAcbeta3-Galbeta4Glcbeta1Cer with less than 10% of the fraction carrying a repeated lacto (type-1) core chain, Galbeta3Glc-NAcbeta3Galbeta3GlcNAcbeta. After stepwise chemical and enzymatic degradation and structural analysis of products the strongest binder was found to be the pentaglycosylceramide GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1-Cer, whereas the hexa- and tetraglycosylceramides were less active, and the trihexosylceramide was inactive. Further studies revealed that the terminal GlcNAcbeta of the pentaglycosylceramide may be exchanged for either GalNAcbeta3, GalNAcalpha3, or Galalpha3 without loss of the activity. Calculated minimum energy conformers of these four isoreceptors show a substantial topographical similarity suggesting that this binding is a result of a molecular mimicry. Although the glycoconjugate composition of human gastric epithelial cells is not known in detail it is proposed that repeating N-acetyllactosamine units of glycoconjugates may serve as bacterial attachment sites in the stomach.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M412688200DOI Listing

Publication Analysis

Top Keywords

binding epitope
8
helicobacter pylori
8
novel binding
4
epitope helicobacter
4
pylori neolacto
4
neolacto carbohydrate
4
carbohydrate chains
4
chains structure
4
structure cross-binding
4
cross-binding properties
4

Similar Publications

High-affinity VNARs targeting human hemoglobin: Screening, stability and binding analysis.

Int J Biol Macromol

January 2025

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China. Electronic address:

Hemoglobin, composed of α- and β-chains, is essential for oxygen transport and is key in diagnosing and treating gastrointestinal and blood disorders. It also aids in detecting blood contamination and estimating transfusion volumes. Immunological methods, based on antigen-antibody interactions, are distinguished by their high sensitivity and accuracy.

View Article and Find Full Text PDF

This study aimed to create a new recombinant virus by modifying the EV-A71 capsid protein, serving as a useful tool and model for studying human Enteroviruses. We developed a new screening method using EV-A71 pseudovirus particles to systematically identify suitable insertion sites and tag types in the VP1 capsid protein. The pseudovirus's infectivity and replication can be assessed by measuring postinfection luciferase signals.

View Article and Find Full Text PDF

Microvirin is a lectin molecule known to have monovalent interaction with glycoprotein gp120. A previously reported high-resolution structural analysis defines the mannobiose-binding cavity of Microvirin. Nonetheless, structure does not directly define the energetics of binding contributions of protein contact residues.

View Article and Find Full Text PDF

Designed mosaic nanoparticles enhance cross-reactive immune responses in mice.

Cell

January 2025

Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA. Electronic address:

Nanoparticle vaccines displaying combinations of SARS-like betacoronavirus (sarbecovirus) receptor-binding domains (RBDs) could protect against SARS-CoV-2 variants and spillover of zoonotic sarbecoviruses into humans. Using a computational approach, we designed variants of SARS-CoV-2 RBDs and selected 7 natural sarbecovirus RBDs, each predicted to fold properly and abrogate antibody responses to variable epitopes. RBDs were attached to 60-mer nanoparticles to make immunogens displaying two (mosaic-2s), five (mosaic-5), or seven (mosaic-7) different RBDs for comparisons with mosaic-8b, which elicited cross-reactive antibodies and protected animals from sarbecovirus challenges.

View Article and Find Full Text PDF

The three rickettsial parasites- Babesia bovis, Theileria annulata and Anaplasma Marginale are responsible for causing Babesiosis, Theileriosis and Anaplasmosis among cattle. These diseases exist due to spreading of infected ticks. A large number of cattle were found to suffer from mixed infections caused by the three parasites at the same time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!