Growth hormone receptor (GHR) is a cytokine receptor superfamily member that binds growth hormone (GH) via its extracellular domain and signals via interaction of its cytoplasmic domain with JAK2 and other signaling molecules. GHR is a target for inducible metalloprotease-mediated cleavage in its perimembranous extracellular domain, a process that liberates the extracellular domain as the soluble GH-binding protein and leaves behind a cell-associated GHR remnant protein containing the transmembrane and cytoplasmic domains. GHR metalloproteolysis can be catalyzed by tumor necrosis factor-alpha-converting enzyme (ADAM-17) and is associated with down-modulation of GH signaling. We now study the fate of the GHR remnant protein. By anti-GHR cytoplasmic domain immunoblotting, we observed that the remnant induced in response to phorbol ester or platelet-derived growth factor has a reliable pattern of appearance and disappearance in both mouse preadipocytes endogenously expressing GHR and transfected fibroblasts expressing rabbit GHR. Lactacystin, a specific proteasome inhibitor, did not appreciably change the time course of remnant appearance or clearance but allowed detection of the GHR stub, a receptor fragment slightly smaller than the remnant but containing the C terminus of the remnant (receptor cytoplasmic domain). In contrast, MG132, another (less specific) proteasome inhibitor, strongly inhibited remnant clearance and prevented stub appearance. Inhibitors of gamma-secretase, an aspartyl protease, also prevented the appearance of the stub, even in the presence of lactacystin, and concomitantly inhibited remnant clearance in the same fashion as MG132. In addition, mouse embryonic fibroblasts derived from presenilin 1 and 2 (PS1/2) knockouts recapitulated the gamma-secretase inhibitor studies, as compared with their littermate controls (PS1/2 wild type). Confocal microscopy indicated that the GHR cytoplasmic domain became localized to the nucleus in a fashion dependent on PS1/2 activity. These data indicate that the GHR is subject to sequential proteolysis by metalloprotease and gamma-secretase activities and may suggest GH-independent roles for the GHR.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M500621200DOI Listing

Publication Analysis

Top Keywords

cytoplasmic domain
16
growth hormone
12
extracellular domain
12
ghr
11
hormone receptor
8
remnant
8
ghr remnant
8
remnant protein
8
specific proteasome
8
proteasome inhibitor
8

Similar Publications

In silico drug repurposing at the cytoplasmic surface of human aquaporin 1.

PLoS One

January 2025

Genome and Structural Bioinformatics Group, Faculty of Medicine, Health and Life Science, Swansea University, Swansea, Wales, United Kingdom.

Aquaporin 1 (AQP1) is a key channel for water transport in peritoneal dialysis. Inhibition of AQP1 could therefore impair water transport during peritoneal dialysis. It is not known whether inhibition of AQP1 occurs unintentionally due to off-target interactions of administered medications.

View Article and Find Full Text PDF

The SUMO-targeted ubiquitin ligase (STUbL) family is involved in multiple cellular processes via a wide range of mechanisms to maintain genome stability. One of the evolutionarily conserved functions of STUbL is to promote changes in the nuclear positioning of DNA lesions, targeting them to the nuclear periphery. In Schizossacharomyces pombe, the STUbL Slx8 is a regulator of SUMOylated proteins and promotes replication stress tolerance by counteracting the toxicity of SUMO conjugates.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

The William H. Annesley, Jr, EyeBrain Center, Farber Neuroscience Institute at Thomas Jefferson University, Philadelphia, PA, USA.

Background: FLIO a novel in vivo reproducible, non-invasive imaging technology, measures fluorescence lifetime decay in two spectral channels for short-lived retinal chromophores in two domains: Channel 1 emission wavelength 498-560 nm corresponding to NADH and FAD/ATP function and Channel 2, 560-720 nm wavelength corresponding to lipofuscin/lysosomal function. These data reflect the retinal mitochondrial molecular environment. Mitochondrial dysfunction has been recently explored as a cause of decreased synaptic function and cognitive decline in AD.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Background: The in vivo amyloid-β (A) and tau (T) biomarkers have been validated against the respective neuropathological burden of amyloid-β plaques and neurofibrillary tangles. We aimed to assess the impact of mixed pathologies on the interpretation of AT biomarker system.

Method: A subset of 71 ADNI participants with available neuropathological data and ante-mortem cerebrospinal fluid (CSF) sampling was analyzed.

View Article and Find Full Text PDF

Histone Deacetylase 6 (HDAC6) is an intriguing therapeutic target in cancer re-search, distinguished as the only HDAC family member predominantly located in the cyto-plasm. HDAC6 features two catalytic domains and a unique ubiquitin-binding domain, which sets it apart from other HDACs. Beyond its role in histone deacetylation, HDAC6 targets vari-ous nonhistone substrates, such as α-tubulin, cortactin, Heat Shock Protein 90 (HSP90), and Heat Shock Factor 1 (HSF1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!