Dynamics of self-assembled chaining in magnetorheological fluids.

Langmuir

Center for Fluid Mechanics, Brown University, Providence, Rhode Island 02912, USA.

Published: January 2004

AI Article Synopsis

  • This study uses numerical simulations to explore how paramagnetic spherical particles behave in a thick fluid, focusing on their aggregation dynamics.
  • When the strength of magnetic attraction surpasses a certain threshold, particles start to combine into larger structures called supraparticles.
  • As time goes on, these clusters grow larger due to interactions between particles and chains, showing a power-law relationship with time that matches well with existing experimental data.

Article Abstract

The aggregation dynamics of paramagnetic spherical particles embedded in a viscous fluid is investigated via numerical simulations using a fully coupled three-dimensional model. Particles experience simultaneously Brownian motion, dipolar magnetic attraction, and multibody hydrodynamic interactions. When the dipole strength characterizing the ratio of magnetic attraction to random diffusion exceeds a critical value, particles join together forming supraparticle structures. As time evolves, particle/chain and chain/ chain interactions lead to a continuous increase of the cluster size. The mean length of particle chains has a power-law dependence with respect to time, as predicted by the theory of diffusion-limited aggregation. Both the exponent and the characteristic time scale agree very well with the experimental results of Promislow et al.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la035540zDOI Listing

Publication Analysis

Top Keywords

magnetic attraction
8
dynamics self-assembled
4
self-assembled chaining
4
chaining magnetorheological
4
magnetorheological fluids
4
fluids aggregation
4
aggregation dynamics
4
dynamics paramagnetic
4
paramagnetic spherical
4
spherical particles
4

Similar Publications

The synthetic availability and wide range of biological activity of hydrazides and hydrazones make them attractive subjects for investigation. In this study, we focused on synthesis of 2-methyl-5-nitro-6-phenylnicotinohydrazide-based hydrazones derived from the corresponding substituted aldehydes. The structure of the obtained compounds was studied using NMR spectroscopy and DFT calculations.

View Article and Find Full Text PDF

A carbon-magnetic modified sepiolite nanocomposite (γ-FeO/SiO-Mg(OH)@BC) was synthesized using a hydrothermal method, consisting of γ-FeO, activated sludge biochar (BC), and alkali-modified sepiolite. Its ability to remove heavy metals such as Sb(V), Pb(II), Cd(II), and Zn(II) was investigated through adsorption experiments. Using response surface optimization, the optimal adsorption conditions were determined: adsorption time = 3.

View Article and Find Full Text PDF

Spin Glass State and Griffiths Phase in van der Waals Ferromagnetic Material FeGeTe.

Nanomaterials (Basel)

December 2024

School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China.

The discovery of two-dimensional (2D) van der Waals ferromagnetic materials opens up new avenues for making devices with high information storage density, ultra-fast response, high integration, and low power consumption. FeGeTe has attracted much attention because of its ferromagnetic transition temperature near room temperature. However, the investigation of its phase transition is rare until now.

View Article and Find Full Text PDF

Non-volatile electronic memory elements are very attractive for applications, not only for information storage but also in logic circuits, sensing devices and neuromorphic computing. Here, a ferroelectric film of guanine nucleobase is used in a resistive memory junction sandwiched between two different ferromagnetic films of Co and CoCr alloys. The magnetic films have an in-plane easy axis of magnetization and different coercive fields whereas the guanine film ensures a very long spin transport length, at 100 K.

View Article and Find Full Text PDF

High-temperature field-free superconducting diode effect in high-T cuprates.

Nat Commun

January 2025

International Center for Quantum Materials, School of Physics, Peking University, Beijing, China.

The superconducting diode effect (SDE) is defined by the difference in the magnitude of critical currents applied in opposite directions. It has been observed in various superconducting systems and attracted high research interests. However, the operating temperature of the SDE is typically low and/or the sample structure is rather complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!