We evaluated the antiplatelet effects of two classes of ATP-sensitive potassium channel openers (K(ATP) openers) on washed human platelets, and the study's emphasis was on the role of mitochondrial K(ATP) in platelet aggregation. Collagen-induced platelet aggregation was inhibited in a dose dependent manner by lemakalim and SKP-450, which are potent cardio-nonselective K(ATP) openers, and also by cardioselective BMS-180448 and BMS-191095 (IC50: 1,130, >1,500, 305.3 and 63.9 microM, respectively), but a significantly greater potency was noted for the cardioselective K(ATP) openers. The latter two K(ATP) openers also inhibited platelet aggregation induced by thrombin, another important blood-borne platelet activator, with similar rank order of potency (IC50: 498.0 and 104.8 microM for BMS-180448 and BMS-191095, respectively). The inhibitory effects of BMS-191095 on collagen-induced platelet aggregation were significantly blocked by a 30-min pretreatment of platelets with glyburide (1 microM) or sodium 5-hydroxydecanoate (5-HD, 100 microM), a nonselective and selective mitochondrial K(ATP) antagonist, respectively, at similar magnitudes; this indicates the role of mitochondrial K(ATP) in the antiplatelet activity of BMS-191095. However, glyburide and 5-HD had no effect when they were added to the platelet cuvette immediately prior to the addition of BMS-191095. These findings indicate that cardioselective mitochondrial K(ATP) openers like BMS-191095 are able to exert cardioprotective effects in cardiac ischemia/reperfusion injury via dual mechanisms directed at the inhibition of platelet aggregation and the protection of cardiomyocytes, and both these mechanisms are mediated by mitochondrial K(ATP).

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02975137DOI Listing

Publication Analysis

Top Keywords

mitochondrial katp
28
platelet aggregation
24
katp openers
20
katp
11
cardioselective mitochondrial
8
platelet
8
openers katp
8
role mitochondrial
8
collagen-induced platelet
8
bms-180448 bms-191095
8

Similar Publications

Hypoxia increases intracellular calcium in glutamate-activated horizontal cells of goldfish retina via mitochondrial K channels and intracellular stores.

Comp Biochem Physiol A Mol Integr Physiol

November 2024

Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada. Electronic address:

Central neurons of the common goldfish (Carassius auratus) are exceptional in their capacity to survive Ca-induced excitotoxicity and cell death during hypoxia. Horizontal cells (HCs) are inhibitory interneurons of the retina that are tonically depolarized by the neurotransmitter, glutamate, yet preserve intracellular Ca homeostasis. In HCs isolated from goldfish, and in the absence of glutamatergic input, intracellular Ca concentration ([Ca]) is protected from prolonged exposure to hypoxia by mitochondrial ATP-dependent K (mK) channel activity.

View Article and Find Full Text PDF

Cartwheel (CW) neurons are glycinergic interneurons in the dorsal cochlear nucleus (DCN) that exhibit spontaneous firing, resulting in potent tonic inhibition of fusiform neurons. CW neurons expressing open ATP-sensitive potassium (K) channels do not fire spontaneously, and activation of K channels halts spontaneous firing in these neurons. However, the conditions that regulate K channel opening in CW neurons remain unknown.

View Article and Find Full Text PDF

This study focused on examining the protection of QiShenYiQi dripping pills (QSYQ) against myocardial infarction (MI) and investigating its potential mechanisms. Ultra high performance liquid chromatography-q exactive-orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) was employed to analyze potential active compounds of QSYQ. The targets of these compounds were predicted using an integrated method and cross-referenced with relevant databases to identify associated pathways.

View Article and Find Full Text PDF

Mitochondrial Ca2+-coupled generation of reactive oxygen species, peroxynitrite formation, and endothelial dysfunction in Cantú syndrome.

JCI Insight

August 2024

Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, Nevada, USA.

Cantú syndrome is a multisystem disorder caused by gain-of-function (GOF) mutations in KCNJ8 and ABCC9, the genes encoding the pore-forming inward rectifier Kir6.1 and regulatory sulfonylurea receptor SUR2B subunits, respectively, of vascular ATP-sensitive K+ (KATP) channels. In this study, we investigated changes in the vascular endothelium in mice in which Cantú syndrome-associated Kcnj8 or Abcc9 mutations were knocked in to the endogenous loci.

View Article and Find Full Text PDF

Lymphatic dysfunction is an underlying component of multiple metabolic diseases, including diabetes, obesity, and metabolic syndrome. We investigated the roles of KATP channels in lymphatic contractile dysfunction in response to acute metabolic stress induced by inhibition of the mitochondrial electron transport chain. Ex vivo popliteal lymphatic vessels from mice were exposed to the electron transport chain inhibitors antimycin A and rotenone, or the oxidative phosphorylation inhibitor/protonophore, CCCP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!