Post-entrapment genome engineering: first exon size does not affect the expression of fusion transcripts generated by gene entrapment.

Genome Res

Department of Microbiology and Immunology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232-2363, USA.

Published: March 2005

Gene trap mutagenesis in mouse embryonic stem cells has been widely used for genome-wide studies of mammalian gene function. However, while large numbers of genes can be disrupted, individual mutations may suffer from limitations due to the structure and/or placement of targeting vector. To extend the utility of gene trap mutagenesis, replaceable 3' [or poly(A)] gene trap vectors were developed that permit sequences inserted in individual entrapment clones to be engineered by Cre-mediated recombination. 3' traps incorporating different drug resistance genes could be readily exchanged, simply by selecting for the drug-resistance gene of the replacement vector. By substituting different 3' traps, we show that otherwise identical fusion genes containing a large first exon (804 nt) are not expressed at appreciably lower levels than genes expressing small first exons (384 and 151 nt). Thus, size appears to have less effect on the expression and processing of first exons than has been reported for internal exons. Finally, a retroviral poly(A) trap (consisting of a RNA polymerase II promoter, a neomycin-resistance gene, and 5'-splice site) typically produced mutagenized clones in which vector sequences spliced to the 3'-terminal exons of cellular transcription units, suggesting strong selection for fusion transcripts that evade nonsense-mediated decay. The efficient exchange of poly(A) traps should greatly extend the utility of mutant libraries generated by gene entrapment and provides new strategies to study the rules that govern the expression of exons inserted throughout the genome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC551569PMC
http://dx.doi.org/10.1101/gr.3258105DOI Listing

Publication Analysis

Top Keywords

gene trap
12
fusion transcripts
8
gene
8
generated gene
8
gene entrapment
8
trap mutagenesis
8
extend utility
8
exons
5
post-entrapment genome
4
genome engineering
4

Similar Publications

Background/purpose: Membrane-free stem cell components (MFSCCs) have been developed by removing cell membranes with antigens to overcome the limitations associated with cell-based therapies and isolate effective peptides. MFSCCs have been reported to have effects on oral infection sites. Chronic inflammatory diseases cause excessive bone resorption.

View Article and Find Full Text PDF

Background: Circadian rhythm disruption (CRD) affects the expression levels of a range of biological clock genes, such as brain and muscle ARNT-Like-1 (BMAL1), which is considered to be an important factor in triggering or exacerbating inflammatory response. However, the underlying effect of CRD on the pathogenesis of apical periodontitis, a common oral inflammatory disease, currently remains unknown. Exploring the effects and pathogenic mechanisms of CRD on apical periodontitis will be beneficial in providing new ideas for the prevention and treatment of apical periodontitis.

View Article and Find Full Text PDF

Ano5 mutation leads to bone dysfunction of gnathodiaphyseal dysplasia disturbing Akt signaling.

Bone Rep

March 2025

Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China.

Background: Gnathodiaphyseal dysplasia (GDD) is a rare autosomal dominant genetic disease characterized by osteosclerosis of the tubular bones and cemento-osseous lesions of the mandibles. () is the pathogenic gene, however, the specific molecular mechanism of GDD remains unclear. Herein, a knockin ( ) mouse model expressing the human mutation p.

View Article and Find Full Text PDF

Leucine has gained recognition as an athletic dietary supplement in recent years due to its various benefits; however, the underlying molecular mechanisms remain unclear. In this study, 20 basketball players were recruited and randomly assigned to two groups. Baseline exercise performance-assessed through a 282-foot sprint, free throws, three-point field goals, and self-rated practice assessments-was measured prior to leucine supplementation.

View Article and Find Full Text PDF

To investigate the effect of the sizes of osteon-like concentric microgroove structures on the osteoclastic differentiation of macrophages on titanium surfaces, and to provide reference for the surface modification of implants. The silicon wafers sputtered with titanium were selected as the control group (smooth surface specimens) and four concentric groups (concentric circles with the maximum diameter of 200 μ m, the minimum diameter of 20 μ m, the spacing of concentric circles of 10 or 30 μm, the width of microgrooves of 10 or 30 μm, and the depth of microgrooves of 5 or 10 μm) specimens (the total sample size in each group was 27). The width of microgrooves of C10-5 and C10-10 groups was 10 μm, the depth was 5 and 10 μm, and the width of microgrooves of C30-5 and C30-10 groups was 30 μ m, the depth was 5 and 10 μ m, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!