Calbindin D(28k) (calbindin) is a cytoplasmic protein expressed in the central nervous system, which is implied in Ca(2+) homeostasis and enzyme regulation. A combination of biochemical methods and mass spectrometry has been used to identify post-translational modifications of human calbindin. The protein was studied at 37 degrees C or 50 degrees C in the presence or absence of Ca(2+). One deamidation site was identified at position 203 (Asn) under all conditions. Kinetic experiments show that deamidation of Asn 203 occurs at a rate of 0.023 h(-1) at 50 degrees C for Ca(2+)-free calbindin. Deamidation is slower for the Ca(2+)-saturated protein. The deamidation process leads to two Asp iso-forms, regular Asp and iso-Asp. The form with regular Asp 203 binds four Ca(2+) ions with high affinity and positive cooperativity, i.e., in a very similar manner to non-deamidated protein. The form with beta-aspartic acid (or iso-Asp 203) has reduced affinity for two or three sites leading to sequential Ca(2+) binding, i.e., the Ca(2+)-binding properties are significantly perturbed. The status of the cysteine residues was also assessed. Under nonreducing conditions, cysteines 94 and 100 were found both in reduced and oxidized form, in the latter case in an intramolecular disulfide bond. In contrast, cysteines 187, 219, and 257 were not involved in any disulfide bonds. Both the reduced and oxidized forms of the protein bind four Ca(2+) ions with high affinity in a parallel manner and with positive cooperativity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2253450 | PMC |
http://dx.doi.org/10.1110/ps.041157705 | DOI Listing |
Epilepsy Behav
January 2025
Centro de Estudios Cerebrales, Facultad de Salud, Universidad del Valle, Cali, Colombia. Electronic address:
Traumatic brain injury is a significant risk factor for the development of post-traumatic epilepsy (PTE), posing a major clinical challenge. This review discusses the critical role of GABAergic interneurons and reactive astrogliosis in the pathophysiology of post-traumatic epilepsy, integrating findings from our research group within the traumatic brain injury context with recent literature to highlight the impact of excitation-inhibition imbalance. We analyzed alterations in interneuron populations, specifically subtypes expressing the calcium-binding proteins parvalbumin, calretinin, and calbindin, and their association with an increased risk of epileptogenesis after TBI.
View Article and Find Full Text PDFInt J Dev Neurosci
February 2025
Faculty of Health Sciences, Department of Biomedical Sciences, State University of Rio Grande do Norte, Mossoró, Rio Grande do Norte, Brazil.
Autism spectrum disorder (ASD) is a complex challenge, influenced by genetic and environmental factors. This review focuses on the proteins calbindin (CB), calretinin (CR) and parvalbumin (PV) in the context of ASD, exploring their clinical correlations and providing a deeper understanding of the spectrum. In addition, we seek to understand the role of these proteins in GABAergic regulation and their implication in the pathophysiology of ASD.
View Article and Find Full Text PDFStem Cell Res Ther
November 2024
School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Korea.
Brain Res
January 2025
Centro de Estudios Cerebrales, Facultad de Salud, Universidad del Valle, Cali, Colombia.
Cortical GABAergic interneurons can be classified according to electrophysiological, biochemical, and/or morphological criteria. In humans, the use of calcium-binding proteins allows us to differentiate three subpopulations of GABAergic interneurons with minimal overlap. Cortical calretinin-positive neurons mainly include bipolar and double-bouquet morphologies, with a largely non-rapid and adaptive firing pattern, originating from the ganglionic eminence and the ventricular and subventricular regions of the developing brain.
View Article and Find Full Text PDFFront Cell Neurosci
October 2024
Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, United States.
Auditory dysfunction affects the vast majority of people with autism spectrum disorder (ASD) and can range from deafness to hypersensitivity. exposure to the antiepileptic valproic acid (VPA) is associated with significant risk of an ASD diagnosis in humans and timed exposure to VPA is utilized as an animal model of ASD. VPA-exposed rats have significantly fewer neurons in their auditory brainstem, thalamus and cortex, reduced ascending projections to the midbrain and thalamus and reduced descending projections from the cortex to the auditory midbrain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!