Telomere loss, senescence, and genetic instability in CD4+ T lymphocytes overexpressing hTERT.

Blood

Terry Fox Laboratory, British Columbia Cancer Agency, 12th floor, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada.

Published: July 2005

AI Article Synopsis

  • The study examines the long-term effects of overexpressing the hTERT gene in T lymphocytes, specifically in CD4+ T cells.
  • T cells were modified to express hTERT and showed increased telomerase activity and a longer proliferative lifespan compared to controls, despite having shorter telomeres at senescence.
  • Findings suggest that while hTERT enhances T cell growth, it does not prevent genetic instability, as indicated by the emergence of binucleated cells and eventual replicative senescence.

Article Abstract

Little is known about the long-term consequences of overexpression of the human telomerase reverse transcriptase (hTERT) gene in T lymphocytes. To address this issue, we transduced polyclonal as well as clonally derived populations of naive and memory CD44 T cells from 2 healthy donors (aged 24 and 34 years) with retroviral vectors encoding green fluorescence protein (GFP) and hTERT (GFP-hTERT) or GFP alone. After transduction, cells were sorted on the basis of GFP expression and cultured in vitro until senescence. T cells transduced with hTERT exhibited high stable telomerase activity throughout the culture period. Relative to GFP controls, minor changes in overall gene expression were observed yet the proliferative lifespan of the hTERT-transduced populations was significantly increased and the rate of telomere loss was lower. Nevertheless, hTERT-transduced cells showed progressive telomere loss and had shorter telomeres at senescence than controls (2.3 +/- 0.3 kilobase [kb] versus 3.4 +/- 0.1 kb). Furthermore, a population of cells with 4N DNA consisting of binucleated cells with connected nuclei emerged in the hTERT-transduced cells prior to senescence. We conclude that overexpression of hTERT in CD4+ T cells provides a proliferative advantage independent of the average telomere length but does not prevent eventual genetic instability and replicative senescence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1895130PMC
http://dx.doi.org/10.1182/blood-2004-10-4144DOI Listing

Publication Analysis

Top Keywords

telomere loss
12
genetic instability
8
cells
8
htert-transduced cells
8
senescence
5
htert
5
telomere
4
loss senescence
4
senescence genetic
4
instability cd4+
4

Similar Publications

Idiopathic pulmonary fibrosis (IPF) is a progressive, late-onset disease marked by lung scarring and irreversible loss of lung function. Genetic factors significantly contribute to both familial and sporadic cases, yet there are scarce evidence-based studies highlighting the benefits of integrating genetics into the management of IPF patients. In this study, we performed whole-exome sequencing and telomere length (TL) measurements on IPF patients and their relatives.

View Article and Find Full Text PDF

Chronic kidney disease is defined as a progressive loss of kidney function associated with impaired recovery after acute kidney injury. Renal ischemia-reperfusion (IR) induces oxidative stress and inflammatory responses leading to severe tissue damage, where incomplete or maladaptive repair accelerates renal fibrosis and aging. To investigate the role of the purinergic P2Y2 receptor (P2Y2R) in these processes, we used P2Y2R knockout (KO) mice subjected to IR.

View Article and Find Full Text PDF

Revealing the secrets of Blue Zones.

Front Pharmacol

December 2024

Department of Medical Biochemistry, School of Medicine, Koc University, Istanbul, Türkiye.

Aging is influenced by cellular senescence mechanisms that are associated with oxidative stress. Oxidative stress is the imbalance between antioxidants and free radicals. This imbalance affects enzyme activities and causes mitochondrial dysfunction.

View Article and Find Full Text PDF

Telomere maintenance is crucial for preventing the linear eukaryotic chromosome ends from being mistaken for DNA double-strand breaks, thereby avoiding chromosome fusions and the loss of genetic material. Unlike most eukaryotes that use telomerase for telomere maintenance, relies on retrotransposable elements-specifically , , and (collectively referred to as HTT)-which are regulated and precisely targeted to chromosome ends. telomere protection is mediated by a set of fast-evolving proteins, termed terminin, which bind to chromosome termini without sequence specificity, balancing DNA damage response factors to avoid erroneous repair mechanisms.

View Article and Find Full Text PDF

Telomerase-Mediated Anti-Ageing Interventions.

Subcell Biochem

December 2024

School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA.

The ageing process involves a gradual decline of chromosome integrity throughout an organism's lifespan. Telomeres are protective DNA-protein complexes that cap the ends of linear chromosomes in eukaryotic organisms. Telomeric DNA consists of long stretches of short "TTAGGG" repeats that are conserved across most eukaryotes including humans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!