BVR reduces biliverdin, the HO-1 and HO-2 product, to bilirubin. Human biliverdin (BVR) is a serine/threonine kinase activated by free radicals. It is a leucine zipper (bZip) DNA-binding protein and a regulatory factor for 8/7-bp AP-1-regulated genes, including HO-1 and ATF-2/CREB. Presently, small interference (si) RNA constructs were used to investigate the role of human BVR in sodium arsenite (As)-mediated induction of HO-1 and in cytoprotection against apoptosis. Activation of BVR involved increased serine/threonine phosphorylation but not its protein or transcript levels. The peak activity at 1 h (4-5-fold) after treatment of 293A cells with 5 mum As preceded induction of HO-1 expression by 3 h. The following suggests BVR involvement in regulating oxidative stress response of HO-1: siBVR attenuated As-mediated increase in HO-1 expression; siBVR, but not siHO-1, inhibited As-dependent increased c-jun promoter activity; treatment of cells with As increased AP-1 binding of nuclear proteins; BVR was identified in the DNA-protein complex; and AP-1 binding of the in vitro translated BVR was phosphorylation-dependent and was attenuated by biliverdin. Most unexpectedly, cells transfected with siBVR, but not siHO-1, displayed a 4-fold increase in apoptotic cells when treated with 10 mum As as detected by flow cytometry. The presence of BVR small interference RNA augmented the effect of As on levels of cytochrome c, TRAIL, and DR-5 mRNA and cleavage of poly(ADP-ribose) polymerase. The findings describe the function of BVR in HO-1 oxidative response and, demonstrate, for the first time, not only that BVR advances the role of HO-1 in cytoprotection but also affords cytoprotection independent of heme degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M413121200DOI Listing

Publication Analysis

Top Keywords

small interference
12
bvr
10
human biliverdin
8
ho-1
8
interference rna
8
induction ho-1
8
ho-1 cytoprotection
8
ho-1 expression
8
sibvr siho-1
8
ap-1 binding
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!