A study of the prenyl transferase reactions was performed by fluorescence using rat brain cytosol fractions as an enzyme source. Four dansylated peptides corresponding to the C-terminal sequence of Ras isoforms were synthesised. The effects of different detergents on the farnesylation or geranylgeranylation of the four peptides were evaluated. Dose-dependent effects of dodecyl-maltoside, a non-ionic detergent, on the farnesyl transferase or geranylgeranyl transferase activities were observed with all peptide substrates. Additionally, the effect of temperature was investigated and these assays were applied to determine Michaelis-Menten constants (K(m)) of the substrates: dansyl-GCVLS (1.8 microM), dansyl-GCVVM (3.2 microM), dansyl-CVIM (3.4 microM) and dansyl-GCVLL (8.4 microM) and FPP (22.6 microM) for FTase activity. Using GGPP as co-substrate, GGTase activity was measured with K(m) values superior to 50 microM for all the three substrate dansyl-GCVLS, dansyl-GCVVM, or dansyl-CVIM, whereas values of 7.6 and 5.4 microM were calculated for the dansyl-GCVLL sequence and GGPP co-substrate, respectively. IC50 values of selective prenyl transferase inhibitors, B-581, FTI 276 and GGTI 287 have been measured to 34, 0.8 and 18 nM, respectively, using dansyl-GCVLS as substrate (FTase inhibition). When dansyl-GCVLL is used as substrate (GGTase inhibition) the IC50 values are 5100, 75 and 5 nM for B-581, FTI 276 and GGTI 287, respectively. Then, this developed method allowed to evaluate the selectivity of all the three inhibitors tested.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2004.11.006 | DOI Listing |
Methods Mol Biol
January 2025
Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
Functionally derivatized analogs of prenyl lipids are valuable tools for the detection and analysis of prenylated proteins. Using a biotinylated analog of geranylgeranyl, we previously identified Ykt6 as a substrate for a novel protein prenyltransferase, termed geranylgeranyltransferase type III (GGTase-III). Ykt6 is an evolutionarily highly conserved SNARE protein that regulates multiple intracellular trafficking pathways, including intra-Golgi trafficking and autophagosome-lysosome fusion.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Marine Drugs Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P R China.
Prenylation modifications of natural products play essential roles in chemical diversity and bioactivities, but imidazole modification prenyltransferases are not well investigated. Here, we discover a dimethylallyl tryptophan synthase family prenyltransferase, AuraA, that catalyzes the rare dimethylallylation on the imidazole moiety in the biosynthesis of aurantiamine. Biochemical assays validate that AuraA could accept both cyclo-(L-Val-L-His) and cyclo-(L-Val-DH-His) as substrates, while the prenylation modes are completely different, yielding C2-regular and C5-reverse products, respectively.
View Article and Find Full Text PDFJ Cell Mol Med
December 2024
Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Fibrosis, characterised by excessive extracellular matrix deposition, contributes to both organ failure and significant mortality worldwide. Whereas fibroblasts are activated into myofibroblasts, marked by phenotypic factors such as α-smooth muscle actin (α-SMA), periostin, fibroblast activation protein (FAP) and heat shock protein 47 (HSP47), the cellular processes of trans-differentiation for fibrosis development remain poorly understood. Herein, we hypothesised that the molecular signalling of geranylgeranyl pyrophosphate (GGPP), a crucial biochemical molecule for protein prenylation, is essential in the regulation of profibrotic mechanisms for fibroblast-to-myofibroblast activation.
View Article and Find Full Text PDFMethods Enzymol
November 2024
Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada. Electronic address:
Microbial carboxylases and decarboxylases play important roles in the global carbon cycle and have many potential applications in biocatalysis and synthetic biology. The widespread family of reversible UbiD-like (de)carboxylases are of particular interest because these enzymes are active against a diverse range of substrates. Several characterized UbiD enzymes have been shown to catalyze reversible (de)carboxylation of aromatic and aliphatic substrates using the recently discovered prenylated FMN (prFMN) cofactor, which is produced by the associated family of UbiX FMN prenyltransferases.
View Article and Find Full Text PDFVirulence
December 2024
Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China.
Prenyltransferases act essential roles in the prenylation modification, which is significant for proteins, like small GTPases to execute various important activities in (). The structures and partial functions of prenyltransferases (FTase, GGTase-I, and GGTase-II) in prenylation process have been dissected in . However, the cellular effects of prenyltransferases on type 2-ME49 strain of are largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!