A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intramolecular energy transfer through charge transfer state in lanthanide compounds: a theoretical approach. | LitMetric

Intramolecular energy transfer through charge transfer state in lanthanide compounds: a theoretical approach.

J Chem Phys

Departamento de Quimica Fundamental, Centro de Ciências Exatas e da Natureza, UFPE, Cidade Universitaria, Recife 50670-901, PE, Brazil.

Published: February 2005

A theoretical approach for the intramolecular energy transfer process involving the ligand-to-metal charge transfer (LMCT) state in lanthanide compounds is developed. Considering a two-electron interaction, both the direct Coulomb and exchange interactions are taken into account, leading to expressions from which selection rules may be derived and transfer rates may be calculated. These selection rules show that the direct Coulomb and exchange mechanisms are complementary, in the same way as obtained in previous works for the case of ligand-lanthanide ion energy transfer processes. An important result from numerical estimates is that the channel ligand-LMCT state is by far the dominant case, leading to transfer rates higher than for the channel lanthanide ion-LMCT state by several orders of magnitude. The analysis of the emission quantum yield as a function of the relative energy position of the LMCT state in a typical Eu(3+) compound allows the identification of two quenching regions, the most pronounced one occurring close to the lower ligand triplet level.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.1830452DOI Listing

Publication Analysis

Top Keywords

energy transfer
12
intramolecular energy
8
charge transfer
8
state lanthanide
8
lanthanide compounds
8
theoretical approach
8
lmct state
8
direct coulomb
8
coulomb exchange
8
selection rules
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!