Distant-dipole field in liquids and diffusion: a perturbative approach.

J Chem Phys

Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil.

Published: January 2005

A perturbative approach is employed to solve the Bloch-Torrey equations in the presence of distant-dipole fields in nuclear magnetic resonance. The procedure, although only carried out to first order in the perturbation parameter a=1/k2Dtaud, could, in principle, be generalized to higher orders. Here D is the diffusivity, taud the dipolar demagnetization time, and k is the wave vector of the spatial modulation of magnetization produced by the magnetic field gradient. The results are especially interesting for dilute binary mixtures consisting of molecular species with different diffusivities. In this case the calculated two-dimensional correlation spectroscopy revamped by asymmetric Z-gradient echo detection spectra are shown to be free from some inadequacies resulting from a simplistic application of standard approximations.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.1832599DOI Listing

Publication Analysis

Top Keywords

perturbative approach
8
distant-dipole field
4
field liquids
4
liquids diffusion
4
diffusion perturbative
4
approach perturbative
4
approach employed
4
employed solve
4
solve bloch-torrey
4
bloch-torrey equations
4

Similar Publications

Pulse approach: a physics-guided machine learning model for thermal analysis in laser-based powder bed fusion of metals.

Prog Addit Manuf

July 2024

Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.

Fast and accurate representation of heat transfer in laser powder-bed fusion of metals (PBF-LB/M) is essential for thermo-mechanical analyses. As an example, it benefits the detection of thermal hotspots at the design stage. While traditional physics-based numerical approaches such as the finite element (FE) method are applicable to a wide variety of problems, they are computationally too expensive for PBF-LB/M due to the space- and time-discretization requirements.

View Article and Find Full Text PDF

This study first proposes an innovative method for optimizing the maximum power extraction from photovoltaic (PV) systems during dynamic and static environmental conditions (DSEC) by applying the horse herd optimization algorithm (HHOA). The HHOA is a bio-inspired technique that mimics the motion cycles of an entire herd of horses. Next, the linear active disturbance rejection control (LADRC) was applied to monitor the HHOA's reference voltage output.

View Article and Find Full Text PDF

NetSDR: Drug repurposing for cancers based on subtype-specific network modularization and perturbation analysis.

Biochim Biophys Acta Mol Basis Dis

January 2025

MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China; Key Laboratory of Alkene-carbon Fibres-based Technology & Application for Detection of Major Infectious Diseases, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China. Electronic address:

Cancer, a heterogeneous disease, presents significant challenges for drug development due to its complex etiology. Drug repurposing, particularly through network medicine approaches, offers a promising avenue for cancer treatment by analyzing how drugs influence cellular networks on a systemic scale. The advent of large-scale proteomics data provides new opportunities to elucidate regulatory mechanisms specific to cancer subtypes.

View Article and Find Full Text PDF

As the volume of plastic waste from electrical and electronic equipment (WEEE) continues to rise, a significant portion is disposed of in the environment, with only a small fraction being recycled. Both disposal and recycling pose unknown health risks that require immediate attention. Existing knowledge of WEEE plastic toxicity is limited and mostly relies on epidemiological data and association studies, with few insights into the underlying toxicity mechanisms.

View Article and Find Full Text PDF

The role of mitochondria as the electric engine of cells is well established. Over the past two decades, accumulating evidence has pointed out that, despite the presence of a highly active glycolytic pathway (Warburg effect), a functional and even upregulated mitochondrial respiration occurs in cancer cells to meet the need of high energy and the biosynthetic demand to sustain their anabolic growth. Mitochondria are also the primary source of intracellular ROS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!