beta-Sheet ligands in action: KLVFF recognition by aminopyrazole hybrid receptors in water.

J Am Chem Soc

Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany.

Published: March 2005

Little is known about the precise mechanism of action of beta-sheet ligands, hampered by the notorious solubility problems involved with protein misfolding and amyloid formation. Recently the nucleation site for the pathogenic aggregation of the Alzheimer's peptide was identified as the KLVFF sequence in the central region of Abeta. A combination of two aminopyrazole ligands with di- or tripeptides taken from this key fragment now furnished water-soluble Abeta-specific ligands which allow model investigations in water. A detailed conformational analysis provides experimental evidence for an increased beta-sheet content induced in the peptide. Strong indications were also found for the peptide backbone recognition via hydrogen bonds plus hydrophobic contributions between aminopyrazole nuclei and Phe residues. The affinity of these new ligands toward the KKLVFF fragment is highly dependent on their sequence and composition from natural and artificial amino acids. Thus, for the first time, detailed insight is gained into the complexation of beta-sheet ligands with model peptides taken directly from Abeta.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja045558bDOI Listing

Publication Analysis

Top Keywords

beta-sheet ligands
12
ligands
5
beta-sheet
4
ligands action
4
action klvff
4
klvff recognition
4
recognition aminopyrazole
4
aminopyrazole hybrid
4
hybrid receptors
4
receptors water
4

Similar Publications

A superhelix is a three-dimensional arrangement of a helix in which the helix is coiled around a common axis. Here, we are reporting a short 12-helix of α,γ-hybrid peptides terminated by metal binding ligands, self-assembled into a right-handed superhelix around a common axis in the presence of Cd(II) ions. Furthermore, these superhelices are assembled into hierarchical superhelical β-sheet-type structural motifs in single crystals.

View Article and Find Full Text PDF

Sevenless, the Drosophila homologue of ROS1 (University of Rochester Sarcoma) (herein, dROS1) is a receptor tyrosine kinase (RTK) essential for the differentiation of Drosophila R7 photoreceptor cells. Activation of dROS1 is mediated by binding to the extracellular region (ECR) of the GPCR (G protein coupled receptor) BOSS (Bride Of Sevenless) on adjacent cells. Activation of dROS1 by BOSS leads to subsequent downstream signaling pathways including SOS (Son of Sevenless).

View Article and Find Full Text PDF

Carbon nanomaterials (CNMs), such as carbon nanotubes (CNTs), graphene quantum dots (GQDs), and carbon quantum dots (CQDs), are prevalent in biological systems and have been widely utilized in applications like environmental sensing and biomedical fields. While their presence in human matrices is projected to increase, the interfacial interactions between carbon-based nanoscopic platforms and biomolecular systems continue to remain underexplored. In this study, we investigated the effect of gelatin-sourced CQDs on the globular milk protein beta-lactoglobulin (BLG).

View Article and Find Full Text PDF

Exploring the interaction mechanism between the programmed death-ligand 1 protein and scutellarin via multi-spectroscopy and computer simulation.

Int J Biol Macromol

January 2025

Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China. Electronic address:

Article Synopsis
  • The PD-L1 protein is crucial for immune responses, and this study explores how scutellarin (SCU), a flavonoid, interacts with it.
  • Fluorescence and computer simulations indicate that SCU binds to PD-L1 primarily through static quenching mechanisms, mainly involving hydrogen bonds and van der Waals forces.
  • The study also reveals that SCU alters PD-L1's structure and stability, suggesting its potential as a therapeutic strategy for immune checkpoint blockade and aiding in drug design.
View Article and Find Full Text PDF

A fucose-binding superlectin from Enterobacter cloacae with high Lewis and ABO blood group antigen specificity.

J Biol Chem

December 2024

Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig; Department of Chemistry, PharmaScienceHub (PSH), Saarland University, D-66123 Saarbrücken, Germany.

Bacteria frequently employ carbohydrate-binding proteins, so-called lectins, to colonize and persist in a host. Thus, bacterial lectins are attractive targets for the development of new antiinfectives. To find new potential targets for antiinfectives against pathogenic bacteria, we searched for homologs of Pseudomonas aeruginosa lectins and identified homologs of LecA in Enterobacter species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!