N-alkyl-N,N-dimethylamine-N-oxides (CnNO, n = 10-20 is the number of alkyl carbon atoms) stimulate the skeletal sarcoplasmic reticulum (SR) Ca(2+)-transporting ATPase activity at low concentrations and inhibit it at high concentrations. The minimum concentration (cmin), at which CnNO inhibits the ATPase, continuously decreases up to n = 16-18 and then increases. The values of Cmin are smaller than the CnNO critical micelle concentration (cmc) for C10NO-C14NO homologs, but larger than cmc for C18NO-C20NO homologs. The ATPase inhibition is caused by the CnNO-induced lipid bilayer structural perturbation in the ATPase annular region, modulated by the partition equilibria of the CnNO molecules between the bilayer and aqueous phase for short alkyl chain (n = 10-16) CnNO homologs, and between the bilayer, micelles and aqueous phase for long alkyl chain (n = 18-20) CnNO homologs.

Download full-text PDF

Source

Publication Analysis

Top Keywords

sarcoplasmic reticulum
8
reticulum ca2+-transporting
8
ca2+-transporting atpase
8
aqueous phase
8
alkyl chain
8
cnno homologs
8
cnno
6
atpase
5
effects n-alkyl-nn-dimethylamine-n-oxides
4
n-alkyl-nn-dimethylamine-n-oxides activity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!