Magnetic hydrophilic methacrylate-based polymer microspheres for genomic DNA isolation.

J Chromatogr A

Masaryk University Brno, Faculty of Science, Department of Microbiology, Tvrdého 14, 60200 Brno, Czech Republic.

Published: February 2005

Carboxyl groups containing magnetic and non-magnetic microspheres were used in solid-phase reversible immobilization (SPRI) of genomic DNA. Magnetic non-porous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate)--P(HEMA-co-EDMA), poly(glycidyl methacrylate)--PGMA and P(HEMA-co-GMA) microspheres with hydrophilic properties were prepared by dispersion copolymerization of the respective monomers in the presence of colloidal iron oxides. DNA from chicken erythrocytes and DNA isolated from bacterial cells of Bifidobacterium longum was used for testing of adsorption/desorption properties of magnetic microspheres. The occurrence of false negative results in polymerase chain reaction (PCR) caused by the presence of extracellular inhibitors in DNA samples has been solved using SPRI. The P(HEMA-co-EDMA) and P(HEMA-co-GMA) microspheres were used for isolation of DNA from different dairy products followed by PCR identification of Bifidobacterium strains.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2004.12.014DOI Listing

Publication Analysis

Top Keywords

genomic dna
8
phema-co-gma microspheres
8
dna
6
microspheres
5
magnetic
4
magnetic hydrophilic
4
hydrophilic methacrylate-based
4
methacrylate-based polymer
4
polymer microspheres
4
microspheres genomic
4

Similar Publications

Background: Predicting response to targeted cancer therapies increasingly relies on both simple and complex genetic biomarkers. Comprehensive genomic profiling using high-throughput assays must be evaluated for reproducibility and accuracy compared with existing methods.

Methods: This study is a multicenter evaluation of the Oncomine™ Comprehensive Assay Plus (OCA Plus) Pan-Cancer Research Panel for comprehensive genomic profiling of solid tumors.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.

View Article and Find Full Text PDF

The nucleolus is a major subnuclear compartment where ribosomal DNA (rDNA) is transcribed and ribosomes are assembled. In addition, recent studies have shown that the nucleolus is a dynamic organizer of chromatin architecture that modulates developmental gene expression. rDNA gene units are assembled into arrays located in the p-arms of five human acrocentric chromosomes.

View Article and Find Full Text PDF

Extensive homologous recombination safeguards oocyte genome integrity in mammals.

Nucleic Acids Res

January 2025

MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, No.866 Yuhangtang Road, 310058, Hangzhou, China.

Meiosis in mammalian oocytes is interrupted by a prolonged arrest at the germinal vesicle stage, during which oocytes have to repair DNA lesions to ensure genome integrity or otherwise undergo apoptosis. The FIRRM/FLIP-FIGNL1 complex dissociates RAD51 from the joint DNA molecules in both homologous recombination (HR) and DNA replication. However, as a type of non-meiotic, non-replicative cells, whether this RAD51-dismantling mechanism regulates genome integrity in oocytes remains elusive.

View Article and Find Full Text PDF

A cross-species inducible system for enhanced protein expression and multiplexed metabolic pathway fine-tuning in bacteria.

Nucleic Acids Res

January 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China.

Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!