Unlabelled: The purpose of the study was to compare bacterial species, clinical, laboratory and imaging findings ((99m )Tc-dimercaptosuccinic acid renal scan and voiding cystogram) in infants and children with high (>/=10(5) colony forming units (CFU)/ml, group A patients) and low (
Conclusion: Low bacterial count urinary tract infections mainly affect infants and young children and are often due to gram-negative bacteria other than E. coli. Clinical and laboratory findings, prevalence of pyelonephritis, reflux and urological malformations are similar in high and low bacterial count urinary tract infections.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00431-005-1632-0DOI Listing

Publication Analysis

Top Keywords

low bacterial
4
bacterial count
4
count urinary
4
urinary tract
4
tract infections
4
infections infants
4
infants young
4
young children
4
children unlabelled
4
unlabelled purpose
4

Similar Publications

Electropositive Magnetic Fluorescent Nanoprobe-Mediated Immunochromatographic Assay for the Ultrasensitive and Simultaneous Detection of Bacteria.

Adv Sci (Weinh)

January 2025

Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China.

Immunochromatographic assays (ICAs) provide simple and rapid strategies for bacterial diagnosis but still suffer from the problems of low sensitivity and high dependency on paired antibodies. Herein, the broad-spectrum capture and detection capability of the antibody-free electropositive nanoprobe are clarified for bacteria for the first time and an ultrasensitive fluorescent ICA platform is constructed for the simultaneous diagnosis of multiple pathogens. A magnetic multilayer quantum dot nanocomposite with an amino-embedded SiO shell (MagMQD@Si) is designed to enrich bacteria from solutions effectively, offer high luminescence, and reduce background signals on test strips, thus greatly improving the sensitivity and stability of ICA technique for pathogen.

View Article and Find Full Text PDF

() infections are increasingly challenging due to their propensity to form biofilms and low outer membrane permeability, especially in chronically infected patients with thick mucus. exhibits multiple drug resistance mechanisms, making it one of the most significant global public health threats. In this study, we found that moxifloxacin (MXC) and antibacterial peptides (ε-poly-l-lysine, ε-PLL) exhibited a synergistic effect against multidrug-resistant (MDR-).

View Article and Find Full Text PDF

Background: Pouchitis is common among patients with ulcerative colitis (UC) who have had colectomy with ileal pouch-anal anastomosis. Antibiotics are first-line therapy for pouch inflammation, increasing the potential for gut colonization with multi-drug resistant organisms (MDRO). Fecal microbial transplant (FMT) is being studied in the treatment of pouchitis and in the eradication of MDRO.

View Article and Find Full Text PDF

Abies pindrow, a vital conifer in the Kashmir Himalayan forests, faces threats from low regeneration rates, deforestation, grazing, and climate change, highlighting the urgency for restoration efforts. In this context, we investigated the diversity of potential culturable seed endophytes in A. pindrow, assessed their plant growth-promoting (PGP) activities, and their impact on seed germination and seedling growth.

View Article and Find Full Text PDF

is an obligate intracellular bacterial pathogen that develops within a membrane-bound vacuole called an inclusion. Throughout its developmental cycle, modifies the inclusion membrane (IM) with type III secreted (T3S) membrane proteins, known as inclusion membrane proteins (Incs). Via the IM, manipulates the host cell to acquire lipids and nutrients necessary for its growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!