The vowel [a:] in a test word, judged normal or dysphonic, was examined with the Self-Organizing Map; the artificial neural network algorithm of Kohonen. The algorithm produces two-dimensional representations (maps) of speech. Input to the acoustic maps consisted of 15-component spectral vectors calculated at 9.83-msec intervals from short-time power spectra. The male and female maps were first calculated from the speech of healthy subjects and then the [a:] samples (15 successive spectral vectors) were examined on the maps. The dysphonic voices deviated from the norm both in the composition of the short-time power spectra (characterized by the dislocation of the trajectory pattern on the map) and in the stability of the spectrum during the performance (characterized by the pattern of the trajectory on the map). Rough voices were distinguished from breathy ones by their patterns on the map. With the limited speech material, an index for the degree of pathology could not be determined. A self-organized acoustic map provides an on-line visual representation of voice and speech in an easily understandable form. The method is thus suitable not only for diagnostic but also for educational and therapeutic purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1044/jshr.3502.287DOI Listing

Publication Analysis

Top Keywords

spectral vectors
8
short-time power
8
power spectra
8
map
5
dysphonia detected
4
detected pattern
4
pattern recognition
4
recognition spectral
4
spectral composition
4
composition vowel
4

Similar Publications

Background: Understanding the genetic etiology of Alzheimer's disease (AD) has been a major focus of research in neurodegenerative diseases. Amid the three common allelic variants of the apolipoprotein E (APOE) gene in humans, called APOE ε2, ε3 and ε4, the ε4 allele is the most common genetic risk factor for late-onset AD, being found in 20% of the world population.

Method: We used Event-Related Potentials (ERP) and Event-Related Spectral Perturbation (ERSP) as features for classification of apolipoprotein E ϵ4 (APOE ε4) allele carriers in AD patients and healthy controls.

View Article and Find Full Text PDF

Background: Early-stage dementia, Mild Cognitive Impairment (MCI), is challenging to diagnose since it is a transient condition distinct from complete cognitive collapse. Recent clinical research studies have identified that balance impairments can be a significant indicator for predicting dementia in older adults. Accordingly, we aimed to identify key balance biomarkers using wearable inertial sensors for early detection of dementia/MCI.

View Article and Find Full Text PDF

With recent significant advancements in artificial intelligence, the necessity for more reliable recognition systems has rapidly increased to safeguard individual assets. The use of brain signals for authentication has gained substantial interest within the scientific community over the past decade. Most previous efforts have focused on identifying distinctive information within electroencephalogram (EEG) recordings.

View Article and Find Full Text PDF

Rapid and accurate detection of protein content is essential for ensuring the quality of maize. Near-infrared spectroscopy (NIR) technology faces limitations due to surface effects and sample homogeneity issues when measuring the protein content of whole maize grains. Focusing on maize grain powder can significantly improve the quality of data and the accuracy of model predictions.

View Article and Find Full Text PDF

Grape seed extract (GSE), one of the world's bestselling dietary supplements, is prone to frequent adulteration with chemically similar compounds. These frauds can go unnoticed within the supply chain due to the use of unspecific standard analytical methods for quality control. This research aims to develop a near-infrared spectroscopy (NIRS) method for the rapid and non-destructive quantitative evaluation of GSE powder in the presence of multiple additives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!