Integrin expression and osteopontin regulation in human fetal osteoblastic cells mediated by substratum surface characteristics.

Tissue Eng

Center for Biomedical Devices and Functional Tissue Engineering, Department of Orthopedics and Rehabilitation, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033, USA.

Published: June 2005

Integrin-mediated adhesion of anchorage-dependent cells to scaffolds is a critical component of tissue engineering. We investigated integrin expression by the human fetal osteoblastic cell line, hFOB 1.19 (hFOB), as a function of substratum surface wettability. The influence of surface wettability on bone cell phenotype was also examined. Plasma-treated quartz (PTQ) and glass (PTG) (hydrophilic, contact angles of 0 degrees), octadecyltrichlorosilane-treated quartz (STQ) and glass (STG) (hydrophobic, contact angles above about 100 degrees), and tissue culture polystyrene were used for cell culture. hFOB cells cultured on hydrophilic substrata displayed well-developed actin stress fibers relative to cells on hydrophobic substrata. Western blot analysis revealed that hFOB cells cultured on hydrophobic substrata (STQ or STG) express lower levels of alphav and beta3 integrin subunits than do cells on hydrophilic substrata (PTQ or PTG). This effect was more pronounced in cells on STQ than on STG. These variations in integrin expression were lessened by extended culture time. Double- labeled integrin/actin immunofluorescence confirmed Western blot results, that is, cells cultured on PTQ displayed distinct, large plaques of alphav and beta3 subunits and integrin alphavbeta3, as well as their colocalization with actin stress fiber ends, whereas cells on STQ did not display integrin plaques after 24 h and displayed only minimal plaque formation after 3 days. Vinculin, a focal adhesion protein that mediates binding between the integrin and actin cytoskeleton, appeared in Western blots to mimic the variations of alphav and beta3 expression with respect to surface wettability. Interestingly, real-time RT-PCR analysis showed that hFOB cultured on hydrophobic substrata, which have downregulated alphav and beta3 integrin subunits, displayed greater steady state mRNA levels of osteopontin, an extracellular matrix (ECM) protein containing the Arg-Gly-Asp (RGD) integrin recognition sequence, than did cells cultured on hydrophilic substrata. Our results imply that substratum surface wettability regulates integrin-mediated bone cell adhesion and further influences the expression of bone cell-ECM complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.2005.11.19DOI Listing

Publication Analysis

Top Keywords

surface wettability
16
cells cultured
16
alphav beta3
16
integrin expression
12
substratum surface
12
hydrophilic substrata
12
hydrophobic substrata
12
cells
10
integrin
9
human fetal
8

Similar Publications

Pickering Emulsions as Catalytic Systems in Food Applications.

ACS Food Sci Technol

January 2025

Department of Food Technology, Engineering and Science, Universitat de Lleida - Agrotecnio CeRCA Center, Avda. Alcalde Rovira Roure 191, 25198 Lleida, Spain.

Enzyme catalysis is important in food processing, such as in baking, dairy, and fiber processing and beverages. A recent advancement in catalysis is the development of Pickering emulsions as enzymatic catalytic systems; however, the use of Pickering emulsions (PEs) as catalytic systems in foods remains largely underdeveloped. Challenges exist that inhibit the widespread adoption of PEs as catalytic systems in foods.

View Article and Find Full Text PDF

The phenomenon of solid dissolution into a solution constitutes a fundamental aspect in both natural and industrial contexts. Nevertheless, its intricate nature at the microscale poses a significant challenge for precise quantitative characterization at a foundational level. In this work, the influence across three specific cleavage planes, namely (100), (111), and (110) on the dissolution kinetics of fluorite in aqueous environments was examined from both experimental and theoretical standpoints.

View Article and Find Full Text PDF

Micro- and nanomorphological modification and roughening of titanium implant surfaces can enhance osseointegration; however, the optimal morphology remains unclear. Laser processing of implant surfaces has demonstrated significant potential due to its precision, controllability, and environmental friendliness. Femtosecond lasers, through precise optimization of processing parameters, can modify the surface of any solid material to generate micro- and nanomorphologies of varying scales and roughness.

View Article and Find Full Text PDF

Dust emissions from open-pit mining pose a significant threat to environmental safety and human health. Currently, the range of dust suppressants used in coal mining is limited, often failing to account for their suitability across various stockpiles. This oversight results in poor infiltration after application, leading to insufficient crust formation and reduced durability.

View Article and Find Full Text PDF

Here, we present surface analysis and biocompatibility evaluation of novel composite material based on graphene oxide traded as BioHastalex. The pristine material's surface morphology and surface chemistry were examined by various analytical methods. The BioHastalex with a thin silver layer was subsequently heat treated and characterized, the impact on the material surface wettability and morphology was evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!