The adhesion of highly activated neutrophils to cerebral microvascular endothelial cells (MVECs) may contribute to disruption and hyperpermeability of the blood-brain barrier (BBB) after cardiac surgery with prolonged cardiopulmonary bypass (CPB). A correlation between CPB duration and neutrophil-mediated BBB damage has not been investigated on the cellular level yet. Therefore, we studied the effects of neutrophils from cardiac surgery patients with CPB time <80 min (group I; n=8) and >80 min (group II; n=8) on the integrity of cultured porcine MVEC. Ex vivo, neutrophils of group II but not of group I significantly degraded the zonula adherens molecule beta-catenin whereas VE-cadherin and occludin were not modified. The transendothelial electric resistance as a measure for the integrity of the endothelial monolayers was reduced over time in both groups. In conclusion, prolonged CPB time entails neutrophil-mediated decrease in MVEC beta-catenin expression, and thus may be an important trigger for BBB disruption.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2005.02.019DOI Listing

Publication Analysis

Top Keywords

cardiac surgery
12
activated neutrophils
8
surgery prolonged
8
prolonged cardiopulmonary
8
cardiopulmonary bypass
8
cpb time
8
degradation microvascular
4
microvascular brain
4
brain endothelial
4
endothelial cell
4

Similar Publications

Where does the tether break in vertebral body tethering cases? Clinical insights from revision cases after tether breakage.

Spine Deform

January 2025

Department of Spine Surgery, Eifelklinik St Brigida, St. Brigida Eifelklinik, Kammerbruchst. 8, 52152, Simmerath, Germany.

Purpose: To evaluate the sites where the tether breaks in vertebral body tethering (VBT) cases.

Methods: Intraoperative evaluation of broken tethers in patients who had anterior revision.

Inclusion Criteria: anterior revision of VBT cases with explantation of the full implant and photo documentation.

View Article and Find Full Text PDF

This case report presents an atypical transverse cervical artery with its detailed anatomy, morphogenesis, and association with the high arch-shaped subclavian artery. The atypical arteries, related arteries, and adjacent cervical and brachial plexuses were macroscopically examined in a 98-year-old Japanese female cadaver donated to The Nippon Dental University for medical education and research. The atypical deep branch of the transverse cervical artery originated from the internal thoracic artery and passed through between the C5 and C6 roots, in close contact with the C5 and C6 junction, to reach the dorsal side of the brachial plexus.

View Article and Find Full Text PDF

Relationship between intraoperative blood pressure variability and postoperative acute kidney injury in pediatric cardiac surgery.

Pediatr Nephrol

January 2025

Department of Anesthesiology, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610000, Sichuan, China.

Background: Cardiac surgery-associated acute kidney injury (CSA-AKI) is a notably common complication in pediatrics, with an incidence rate ranging from 15 to 64%. This rate is significantly higher than that observed in adults. Currently, there is a lack of substantial evidence regarding the association between intraoperative blood pressure variability (BPV) during cardiac surgery with cardiopulmonary bypass (CPB) and the development of AKI in pediatric patients.

View Article and Find Full Text PDF

Targeted editing of CCL5 with CRISPR-Cas9 nanoparticles enhances breast cancer immunotherapy.

Apoptosis

January 2025

Department of Breast Cancer Surgery, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, Nanchang, Jiangxi, 330029, China.

Breast cancer remains one of the leading causes of cancer-related mortality among women worldwide. Immunotherapy, a promising therapeutic approach, often faces challenges due to the immunosuppressive tumor microenvironment. This study explores the innovative use of CRISPR-Cas9 technology in conjunction with FCPCV nanoparticles to target and edit the C-C Motif Chemokine Ligand 5 (CCL5) gene, aiming to improve the efficacy of breast cancer immunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!