hCAT-3 (human cationic amino acid transporter type three) was investigated with both the two-electrode voltage clamp method and tracer experiments. Oocytes expressing hCAT-3 displayed less negative membrane potentials and larger voltage-dependent currents than native or water-injected oocytes did. Ion substitution experiments in hCAT-3-expressing oocytes revealed a large conductance for Na+ and K+. In the presence of L-Arg, voltage-dependent inward and outward currents were observed. At symmetrical (inside/outside) concentrations of L-Arg, the conductance of the transporter increased monoexponentially with the L-Arg concentrations; the calculated Vmax and KM values amounted to 8.3 microS and 0.36 mM, respectively. The time constants of influx and efflux of [3H]L-Arg, at symmetrically inside/outside L-Arg concentrations (1 mM), amounted to 79 and 77 min, respectively. The flux data and electrophysiological experiments suggest that the transport of L-Arg through hCAT-3 is symmetric, when the steady state of L-Arg flux has been reached. It is concluded that hCAT-3 is a passive transport system that conducts monovalent cations including L-Arg. The particular role of hCAT-3 in the diverse tissues remains to be elucidated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2004.12.011DOI Listing

Publication Analysis

Top Keywords

oocytes expressing
8
expressing hcat-3
8
l-arg concentrations
8
l-arg
7
hcat-3
6
monovalent cation
4
cation conductance
4
conductance xenopus
4
xenopus laevis
4
oocytes
4

Similar Publications

Comparative transcriptome analysis identified genes involved in ovarian development in Takifugu rubripes.

Comp Biochem Physiol Part D Genomics Proteomics

December 2024

Changhai County Marine and Fisheries Comprehensive Administrative LawEnforcement Team, Dalian, China.

Ovarian development is a complex process involving multiple genes, but the molecular mechanisms underlying this process in Takifugu rubripes remain poorly understood. This study aimed to identify genes associated with ovarian development in T. rubripes and to investigate the regulatory mechanisms of oocyte maturation.

View Article and Find Full Text PDF

Aquatic herbicides are commonly used to control a variety of non-native plants. One common active ingredient used in commercial herbicide formulations globally is 2,4-dichlorophenoxyacetic acid (2,4-D). Though 2,4-D is used in aquatic ecosystems, no studies have investigated cellular, biochemical, and transcriptional effects or mechanisms of 2,4-D exposure on fathead minnows (Pimephales promelas) throughout juvenile development.

View Article and Find Full Text PDF

Polyethylene microplastic exposure adversely affects oocyte quality in human and mouse.

Environ Int

December 2024

Center for Reproductive Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China. Electronic address:

Microplastics (MPs) are pervasive environmental contaminants, resulting in unavoidable human exposure. This study identified MPs in follicular fluid and investigated the specific MPs and mechanisms that adversely affect oocytes. MPs in the follicular fluid of 44 infertile women undergoing assisted reproductive technology were measured using Raman microspectroscopy.

View Article and Find Full Text PDF

TRPA1 is a homotetrameric non-selective calcium-permeable channel. It contributes to chemical and temperature sensitivity, acute pain sensation, and development of inflammation. HCIQ2c1 is a peptide from the sea anemone that inhibits serine proteases.

View Article and Find Full Text PDF

In this study, we investigated the regulatory roles of the () gene in the reproductive process of female . Its total cDNA length was 1848 bp, encoding for 460 amino acids. It contained conserved domains typical of epoxide hydrolases, such as the Abhydrolase family domain, the EHN epoxide hydrolase superfamily domain, and the "WWG" and "HGWP" motifs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!