Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We propose a discrete-time Bayesian hierarchical model for the population dynamics of the great gerbil-flea ecological system. The model accounts for the sampling variability arising from data originally collected for other purposes. The prior for the unknown population densities incorporates specific biological hypotheses regarding the interacting dynamics of the two species, as well as their life cycles, where density-dependent effects are included. Posterior estimates are obtained via Markov chain Monte Carlo. The variance of the observed density estimates is a quadratic function of the unknown density. Our study indicates the presence of a density-dependent growth rate for the gerbil population. For the flea population there is clear evidence of density-dependent over-summer net growth, which is dependent on the flea-to-gerbil ratio at the beginning of the reproductive summer. Over-winter net growth is favored by high density. We estimate that on average 35% of the gerbil population survives the winter. Our study shows that hierarchical Bayesian models can be useful in extracting ecobiological information from observational data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.0006-341X.2005.030536.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!