Therapeutic heparin concentrations selectively inhibit the intrinsic tenase complex in an antithrombin-independent manner. To define the molecular target and mechanism for this inhibition, recombinant human factor IXa with alanine substituted for solvent-exposed basic residues (H92, R170, R233, K241) in the protease domain was characterized with regard to enzymatic activity, heparin affinity, and inhibition by low molecular weight heparin (LMWH). These mutations only had modest effects on chromogenic substrate hydrolysis and the kinetics of factor X activation by factor IXa. Likewise, factor IXa H92A and K241A showed factor IXa-factor VIIIa affinity similar to factor IXa wild type (WT). In contrast, factor IXa R170A demonstrated a 4-fold increase in apparent factor IXa-factor VIIIa affinity and dramatically increased coagulant activity relative to factor IXa WT. Factor IXa R233A demonstrated a 2.5-fold decrease in cofactor affinity and reduced ability to stabilize cofactor half-life relative to wild type, suggesting that interaction with the factor VIIIa A2 domain was disrupted. Markedly (R233A) or moderately (H92A, R170A, K241A) reduced binding to immobilized LMWH was observed for the mutant proteases. Solution competition demonstrated that the EC(50) for LMWH was increased less than 2-fold for factor IXa H92A and K241A but over 3.5-fold for factor IXa R170A, indicating that relative heparin affinity was WT > H92A/K241A > R170A >> R233A. Kinetic analysis of intrinsic tenase inhibition demonstrated that relative affinity for LMWH was WT > K241A > H92A > R170A >> R233A, correlating with heparin affinity. Thus, LMWH inhibits intrinsic tenase by interacting with the heparin-binding exosite in the factor IXa protease domain, which disrupts interaction with the factor VIIIa A2 domain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi047934a | DOI Listing |
Biol Pharm Bull
November 2024
Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare.
J Thromb Thrombolysis
December 2024
Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, 70125, USA.
RSC Adv
August 2024
Department of Chemistry, Technological University of the Philippines Ayala Boulevard, Ermita Manila Philippines.
Thrombotic disorders pose a global health threat, emphasizing the urgent need for effective management strategies. This study explores the potential of bioactive compounds derived from guava leaves in inhibiting coagulation factor IXa (CFIXa) using methods. Using GC-MS, bioactive compounds extracted from guava leaf through ethanol maceration were identified.
View Article and Find Full Text PDFBlood
November 2024
Department of Medicine and UNC Blood Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC.
Coagulation factor IX plays a central role in hemostasis through interaction with factor VIIIa to form a factor X-activating complex at the site of injury. The absence of factor IX activity results in the bleeding disorder hemophilia B. This absence of activity can arise either from a lack of circulating factor IX protein or mutations that decrease the activity of factor IX.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2024
Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104.
Hemostasis relies on a reaction network of serine proteases and their cofactors to form a blood clot. Coagulation factor IXa (protease) plays an essential role in hemostasis as evident from the bleeding disease associated with its absence. RNA aptamers specifically targeting individual coagulation factors have potential as anticoagulants and as probes of the relationship between structure and function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!