Therapeutic heparin concentrations selectively inhibit the intrinsic tenase complex in an antithrombin-independent manner. To define the molecular target and mechanism for this inhibition, recombinant human factor IXa with alanine substituted for solvent-exposed basic residues (H92, R170, R233, K241) in the protease domain was characterized with regard to enzymatic activity, heparin affinity, and inhibition by low molecular weight heparin (LMWH). These mutations only had modest effects on chromogenic substrate hydrolysis and the kinetics of factor X activation by factor IXa. Likewise, factor IXa H92A and K241A showed factor IXa-factor VIIIa affinity similar to factor IXa wild type (WT). In contrast, factor IXa R170A demonstrated a 4-fold increase in apparent factor IXa-factor VIIIa affinity and dramatically increased coagulant activity relative to factor IXa WT. Factor IXa R233A demonstrated a 2.5-fold decrease in cofactor affinity and reduced ability to stabilize cofactor half-life relative to wild type, suggesting that interaction with the factor VIIIa A2 domain was disrupted. Markedly (R233A) or moderately (H92A, R170A, K241A) reduced binding to immobilized LMWH was observed for the mutant proteases. Solution competition demonstrated that the EC(50) for LMWH was increased less than 2-fold for factor IXa H92A and K241A but over 3.5-fold for factor IXa R170A, indicating that relative heparin affinity was WT > H92A/K241A > R170A >> R233A. Kinetic analysis of intrinsic tenase inhibition demonstrated that relative affinity for LMWH was WT > K241A > H92A > R170A >> R233A, correlating with heparin affinity. Thus, LMWH inhibits intrinsic tenase by interacting with the heparin-binding exosite in the factor IXa protease domain, which disrupts interaction with the factor VIIIa A2 domain.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi047934aDOI Listing

Publication Analysis

Top Keywords

factor ixa
44
factor
16
intrinsic tenase
16
heparin affinity
12
ixa
10
heparin-binding exosite
8
protease domain
8
ixa h92a
8
h92a k241a
8
factor ixa-factor
8

Similar Publications

Article Synopsis
  • Dysregulation of BDNF is linked to Alzheimer's disease, and this study examined its expression in the hippocampus of 5xFAD mice, focusing on sex and age.
  • At 3 months, female wild-type mice had higher Bdnf mRNA levels than males, but this difference disappeared in female 5xFAD mice.
  • By 6 months, female 5xFAD mice showed a significant decrease in full-length TrkB receptor mRNA while increased levels of truncated TrkB were observed in both sexes, highlighting potential disruptions in BDNF signaling due to Alzheimer's.
  • The research indicates that certain Bdnf splice variants are maintained at higher levels in young female mice but may be affected by Alzheimer's
View Article and Find Full Text PDF

Discovery of a new lead molecule to develop a novel class of human factor XIIa inhibitors.

J Thromb Thrombolysis

December 2024

Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, 70125, USA.

Article Synopsis
  • FXIIa is a plasma protease in the contact activation pathway, and inhibiting it could lead to safer anticoagulation treatments without the bleeding risks of current options.!* -
  • The study tested an amidine-containing molecule (inhibitor 1) and found it primarily inhibits human FXIIa with an IC value of ~30 µM, while showing variable selectivity against other factors involved in blood coagulation.!* -
  • Inhibitor 1 effectively prolongs clotting time in plasma without significant cytotoxicity, making it a promising candidate for further development as a safer anticoagulant for thromboembolic diseases.!*
View Article and Find Full Text PDF

Thrombotic disorders pose a global health threat, emphasizing the urgent need for effective management strategies. This study explores the potential of bioactive compounds derived from guava leaves in inhibiting coagulation factor IXa (CFIXa) using methods. Using GC-MS, bioactive compounds extracted from guava leaf through ethanol maceration were identified.

View Article and Find Full Text PDF

Coagulation factor IX plays a central role in hemostasis through interaction with factor VIIIa to form a factor X-activating complex at the site of injury. The absence of factor IX activity results in the bleeding disorder hemophilia B. This absence of activity can arise either from a lack of circulating factor IX protein or mutations that decrease the activity of factor IX.

View Article and Find Full Text PDF

Hemostasis relies on a reaction network of serine proteases and their cofactors to form a blood clot. Coagulation factor IXa (protease) plays an essential role in hemostasis as evident from the bleeding disease associated with its absence. RNA aptamers specifically targeting individual coagulation factors have potential as anticoagulants and as probes of the relationship between structure and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!